• Title/Summary/Keyword: coefficient-based method

Search Result 2,698, Processing Time 0.034 seconds

Determination of the Coefficient of Variation of Shear Wave Velocity in Rock Filled Zone of CFRD (Concrete Faced Rock Filled Dam) for Reliability Based Analysis (신뢰성 기반 해석을 위한 국내 CFRD 사력존 재료의 전단파 속도 변동계수 결정)

  • Park, Hyung-Choon;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.17-24
    • /
    • 2017
  • Shear wave velocity (or shear modulus) of rock filled zone of CFRD is very important factor in the evaluation of performance of CFRD under the load such as earthquake. A shear wave velocity profile can be determined by surface wave method but this profile has been uncertainty caused by spatial variation of material property in rock filled zone. This uncertainty in shear wave velocity profile could be evaluated by the reliability based analysis which uses a coefficient of variation of material property to consider uncertainty caused by spatial variation of material property. In this paper, the possible 600 shear wave velocity profiles in rock filled zone of CFRD were generated using the method based on harmonic wavelet transform and 8 shear wave velocity profiles by HWAW method in the field, and the coefficients of variation of shear wave velocity with depth were evaluated for the rock filled zone of CFRD in Korea.

An Efficient Image Registration Based on Multidimensional Intensity Fluctuation (다차원 명암도 증감 기반 효율적인 영상정합)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.287-293
    • /
    • 2012
  • This paper presents an efficient image registration method by measuring the similarity, which is based on multi-dimensional intensity fluctuation. Multi-dimensional intensity which considers 4 directions of the image, is applied to reflect more properties in similarity decision. And an intensity fluctuation is also applied to measure comprehensively the similarity by considering a change in brightness between the adjacent pixels of image. The normalized cross-correlation(NCC) is calculated by considering an intensity fluctuation to each of 4 directions. The 5 correlation coefficients based on the NCC have been used to measure the registration, which are total NCC, the arithmetical mean and a simple product on the correlation coefficient of each direction and on the normalized correlation coefficient by the maximum NCC, respectively. The proposed method has been applied to the problem for registrating the 22 face images of 243*243 pixels and the 9 person images of 500*500 pixels, respectively. The experimental results show that the proposed method has a superior registration performance that appears the image properties well. Especially, the arithmetical mean on the correlation coefficient of each direction is the best registration measure.

Accelerometer-based Drag Measurement in a Shock Tunnel (충격파 터널에서의 가속도계 기반 항력 측정)

  • Jang, Byungkook;Kim, Keunyeong;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.489-495
    • /
    • 2020
  • An accelerometer-based system was designed and constructed for drag measurement in a shock tunnel. Drag coefficient of a conical model was measured under a Mach 6 flow condition. A simple and intuitive calibration method was presented to compensate for the friction force of the drag measurement system, and the results of the measurement were compared with computational fluid dynamics in which the simple conical model was analyzed. The influence of drag measurement interference by supports of various shapes was identified and the design was presented to minimize. The drag coefficient measurement using the modified support showed that the error of the drag coefficient by the support was decreased.

Two Wheeler Recognition Using the Correlation Coefficient for Histogram of Oriented Gradients to Apply Intelligent Wheelchair (지능형 휠체어 적용을 위한 기울기 히스토그램의 상관계수를 이용한 도로위의 이륜차 인식)

  • Kim, Bum-Koog;Park, Sang-Hee;Lee, Yeung-Hak;Lee, Gang-Hwa
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.4
    • /
    • pp.336-344
    • /
    • 2011
  • This article describes a new recognition algorithm using correlation coefficient for intelligent wheelchair to avoid collision for elderly or disabled people. The correlation coefficient can be used to represent the relationship of two different areas. The algorithm has three steps: Firstly, we extract an edge vector using the Histogram of Oriented Gradients(HOG) which includes gradient information and unique magnitude for each cell. From this result, the correlation coefficients are calculated between one cell and others. Secondly, correlation coefficients are used as the weighting factors for normalizing the HOG cell. And finally, these features are used to classify or detect variable and complicated shapes of two wheelers using Adaboost algorithm. In this paper, we propose a new feature vectors which is calculated by weighted cell unit to classify with multiple view-based shapes: frontal, rear and side views($60^{\circ}$, $90^{\circ}$ and mixed angle). Our experimental results show that two wheeler detection system based on a proposed approach leads to a higher detection accuracy than the method using traditional features in a similar detection time.

Electrical Properties of Multilayer Chip Varistors in the Response Surface Analysis (반응표면분석법에 의한 적층 칩 바리스터의 전기적 특성)

  • Yoon, Jung-Rag;Jeong, Tae-Seok;Choi, Keun-Mook;Lee, Seok-Weon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.496-501
    • /
    • 2007
  • In order to enhance sintering characteristics on the $ZnO-Pr_6O_{11}$ based multilayer chip varistors (MLVs), a response surface analysis using central composite design method were carried out. As a result, varistor voltage($V_{1mA}$), nonlinear coefficient ($\alpha$), leakage current ($I_L$) and capacitance (C) were considered to be mainly affected by sintered temperature and holding time. MLVs sintered at $1200^{\circ}C$ and above $1200^{\circ}C$ revealed poor electrical characteristics, possibly due to the reaction between electrode materials(Pd) and $ZnO-Pr_6O_{11}$ based ceramics. On the sintering temperature range $1150{\sim}1175^{\circ}C$, nonlinear coefficient ($\alpha$) and leakage current ($I_L$) were shown to be $60{\sim}69$ and below $0.3{\mu}A$, respectively. In particular, MLVs sintered at $1175^{\circ}C$, 1.5 hr and $2^{\circ}C/hr$ (cooling speed) showed stable ESD(Electrical Static Discharge) characteristics under the condition of 10 times at 8 Kv with deviation varistor voltage, and deviation nonlinear coefficient were 0.3% and 0.33% (at positive), 0.55% (at negative), respectively.

A Method of Tending Practices for the Control of Stand Structure in Natural Mixed Stands (천연(天然) 혼효임분(混淆林分)의 구조조정(構造調整)을 위한 무육방법(撫育方法))

  • Shin, Man Yong;Bae, Sang Won;Lim, Joo-Hoon;Chun, Young Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.155-163
    • /
    • 1994
  • This study was conduced to provide a method of tending practices for natural mixed stands, which have a possibility of inducing to selection cutting stand based on the analysis of stand structures. For this, first, diameter distribution for a balanced selection cutting stand was predicted using Q theory applied to natural stands. The method of estimating diminution ratio coefficient Q is presented. The possible tending practice method which could be adopted to natural stands is discussed based on two different diameter distributions and side conditions.

  • PDF

A New Design Method for Multisection Impedance Transformer Based on the Inverse Scattering (역산란을 이용한 다단 임피던스 트랜스포머의 새로운 설계 방법)

  • 이민수;박영태
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.4
    • /
    • pp.89-94
    • /
    • 2001
  • A new design method of the microwave multisection impedance transformer is proposed. This method is based on the inverse scattering theory using the frequency domain reflection coefficient of the transformer to be designed. In the first step, the permittivity profile of a virtual one-dimensional dielectric medium is reconstructed using the desired reflection coefficient. In the second step, the transformer which is equivalent to the reconstructed dielectric medium in view of reflection characteristics is synthesized. Theoretically, this method can be used to design the impedance matching transformers with arbitrary passband characteristics within the limit of the Bode-Fano criteria[1]. Our approach is examined for two design examples to show that it is valid.

  • PDF

Two-Dimensional Sub-diffraction-limited Imaging by an Optimized Multilayer Superlens

  • Ahmadi, Marzieh;Forooraghi, Keyvan;Faraji-Dana, Reza;Ghaffari-Miab, Mohsen
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.653-662
    • /
    • 2016
  • An optimized multilayer superlens is designed, using a rigorous and efficient approach based on the method of moments (MoM) in conjunction with a simulated annealing (SA) algorithm. For the MoM solution, fast evaluation of closed-form Green's functions (GFs) in the spatial domain is performed by applying the complex-image (CI) technique, which obviates the time-consuming numerical evaluation of Sommerfeld integrals. The imaging capability of the superlens is examined with the correlation coefficient; results show that using circular polarization for the incident wave can improve this coefficient. To validate the proposed method, finite-element-based simulations are exploited, which reveal the method's accuracy and computational efficiency. Simulation results indicate that the designed structure is capable of producing two-dimensional sub-diffraction-limited images in the visible range, which may make it more versatile for practical applications. Finally, as a considerable finding, it is demonstrated for the proposed design that using circularly polarized illumination provides improved super-resolving performance, compared to linearly polarized illumination.

Chloride diffusivity of concrete: probabilistic characteristics at meso-scale

  • Pan, Zichao;Ruan, Xin;Chen, Airong
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.187-207
    • /
    • 2014
  • This paper mainly discusses the influence of the aggregate properties including grading, shape, content and distribution on the chloride diffusion coefficient, as well as the initiation time of steel corrosion from a probabilistic point of view. Towards this goal, a simulation method of random aggregate structure (RAS) based on elliptical particles and a procedure of finite element analysis (FEA) at meso-scale are firstly developed to perform the analysis. Next, the chloride diffusion coefficient ratio between concrete and cement paste $D_{app}/D_{cp}$ is chosen as the index to represent the effect of aggregates on the chloride diffusion process. Identification of the random distribution of this index demonstrates that it can be viewed as actually having a normal distribution. After that, the effect of aggregates on $D_{app}/D_{cp}$ is comprehensively studied, showing that the appropriate properties of aggregates should be decided by both of the average and the deviation of $D_{app}/D_{cp}$. Finally, a case study is conducted to demonstrate the application of this mesoscopic method in predicting the initiation time of steel corrosion in reinforced concrete (RC) structures. The mesoscopic probabilistic method developed in this paper can not only provide more reliable evidences on the proper grading and shape of aggregates, but also play an important role in the probability-based design method.

A Prediction of Pollutant Emission Rate using Numerical Analysis and CFD in Double-Layered Building Materials (수치해석 및 CFD를 이용한 소형챔버내 복합건축자재의 오염물질 방출량 예측)

  • Kim, Chang-Nam;Leigh, Seung-Bok;Kim, Tae-Yeon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.277-282
    • /
    • 2006
  • In order to predict the indoor air pollutant, the VOCs emission rate is used through small chamber in the design process. However, the small chamber method has limitations as the convective mass transfer coefficient, the most important factor when predicting VOCs contamination of indoor air, is different between the small chamber result and the measured data in the actual building. Furthermore, the existing studies which analyzed mass transfer coefficient in the small chamber were directed on the small chambers developed at the time and FLEC(Field and Laboratory Emission Cell), thus, are different from the current small chamber which has been changed with improvements. The purpose of this study is to determine the emission rate of pollutant in double-layered building materials through the CFD(Computational of Fluid Dynamics) and Numerical analysis based on the mass transfer coefficient on singled-layered building material by using the current small chamber widely used in Korea. Futhermore, this study used the new convective mass transfer coefficient($h_m'$) which indicates the existing convective mass transfer coefficient($h_m$) including VOC partition coefficient(k). Also, formaldehyde was selected as target pollutant.

  • PDF