• Title/Summary/Keyword: coefficient-based method

Search Result 2,698, Processing Time 0.031 seconds

Determination of High-pass Filter Frequency with Deep Learning for Ground Motion (딥러닝 기반 지반운동을 위한 하이패스 필터 주파수 결정 기법)

  • Lee, Jin Koo;Seo, JeongBeom;Jeon, SeungJin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.183-191
    • /
    • 2024
  • Accurate seismic vulnerability assessment requires high quality and large amounts of ground motion data. Ground motion data generated from time series contains not only the seismic waves but also the background noise. Therefore, it is crucial to determine the high-pass cut-off frequency to reduce the background noise. Traditional methods for determining the high-pass filter frequency are based on human inspection, such as comparing the noise and the signal Fourier Amplitude Spectrum (FAS), f2 trend line fitting, and inspection of the displacement curve after filtering. However, these methods are subject to human error and unsuitable for automating the process. This study used a deep learning approach to determine the high-pass filter frequency. We used the Mel-spectrogram for feature extraction and mixup technique to overcome the lack of data. We selected convolutional neural network (CNN) models such as ResNet, DenseNet, and EfficientNet for transfer learning. Additionally, we chose ViT and DeiT for transformer-based models. The results showed that ResNet had the highest performance with R2 (the coefficient of determination) at 0.977 and the lowest mean absolute error (MAE) and RMSE (root mean square error) at 0.006 and 0.074, respectively. When applied to a seismic event and compared to the traditional methods, the determination of the high-pass filter frequency through the deep learning method showed a difference of 0.1 Hz, which demonstrates that it can be used as a replacement for traditional methods. We anticipate that this study will pave the way for automating ground motion processing, which could be applied to the system to handle large amounts of data efficiently.

Numerical analysis on dynamic response and damage assessment of FRP bars reinforced-UHPC composite beams under impact loading

  • Tao Liu;Qi M. Zhu;Rong Ge;Lin Chen;Seongwon Hong
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.409-425
    • /
    • 2024
  • This paper utilizes LS-DYNA software to numerically investigate impact response and damage evaluation of fiber-reinforced polymer (FRP) bars-reinforced ultra-high-performance concrete (UHPC) composite beams (FRP-UHPC beams). Three-dimensional finite element (FE) models are established and calibrated by using literature-based static and impact tests, demonstrating high accuracy in simulating FRP-UHPC beams under impact loading. Parametric analyses explore the effects of impact mass, impactor height, FRP bar type and diameter, and clear span length on dynamic response and damage modes. Two failure modes emerge: tensile failure with bottom longitudinal reinforcement fracture and compression failure with local concrete compression near the impact region. Impact mass or height variation under the same impact energy significantly affects the first peak impact force, but minimally influences peak midspan displacement with a difference of no more than 5% and damage patterns. Increasing static flexural load-carrying capacity enhances FRP-UHPC beam impact resistance, reducing displacement deformation by up to 30%. Despite similar static load-carrying capacities, different FRP bars result in varied impact resistance. The paper proposes a damage assessment index based on impact energy, static load-carrying capacity, and clear span length, correlating well with beam end rotation. Their linearly-fitting coefficient was 1.285, 1.512, and 1.709 for the cases with CFRP, GFRP, and BFRP bars, respectively. This index establishes a foundation for an impact-resistant design method, including a simplified formula for peak midspan displacement assessment.

Study of Prediction of Liquefaction Potential Index Based on Machine Learning Method (기계학습기법을 통한 액상화 발생가능 지수 예측에 관한 연구)

  • Junseo Jeon;Jongkwan Kim;Jintae Han;Seunghwan Seo;Byeonghan Jeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.11
    • /
    • pp.5-12
    • /
    • 2024
  • In this study, the liquefaction potential index was assessed using actual borehole data and seismic waves, and a predictive model was developed based on machine learning methods. A total of 10 features were selected including factors reflecting the characteristics of the seismic waves. To identify candidate methods, a preliminary test was conducted using commonly used machine learning methods for regression, followed by Bayesian optimization to optimize the hyperparameters for these candidate methods. Among artificial neural networks, Gaussian process regression, and random forest, it was found that the random forest effectively predicted the liquefaction potential index, as indicated by a low root mean square error, a high coefficient of determination, and considerations regarding overfitting. However, it was noted that the model tends to underestimate the liquefaction potential index when the index was 5 or higher.

A Study on the Verification of an Indoor Test of a Portable Penetration Meter Using the Cone Penetration Test Method (자유낙하 콘관입시험법을 활용한 휴대용 다짐도 측정기의 실내시험을 통한 검증 연구)

  • Park, Geoun Hyun;Yang, An Seung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2019
  • Soil compaction is one of the most important activities in the area of civil works, including road construction, airport construction, port construction and backfilling construction of structures. Soil compaction, particularly in road construction, can be categorized into subgrade compaction and roadbed compaction, and is significant work that when done poorly can serve as a factor causing poor construction due to a lack of compaction. Currently, there are many different types of compaction tests, and the plate bearing test and the unit weight of soil test based on the sand cone method are commonly used to measure the degree of compaction, but many other methods are under development as it is difficult to secure economic efficiency. For the purpose of this research, a portable penetration meter called the Free-Fall Penetration Test (FFPT) was developed and manufactured. In this study, a homogeneous sample was obtained from the construction site and soil was classified through a sieve analysis test in order to perform grain size analysis and a specific gravity test for an indoor test. The principle of FFPT is that the penetration needle installed at the tip of an object put into free fall using gravity is used to measure the depth of penetration into the road surface after subgrade or roadbed compaction has been completed; the degree of compaction is obtained through the unit weight of soil test according to the sand cone method and the relationship between the degree of compaction and the depth of the penetration needle is verified. The maximum allowable grain size of soil is 2.36 mm. For $A_1$ compaction, a trend line was developed using the result of the test performed from a drop height of 10 cm, and coefficient of determination of the trend line was $R^2=0.8677$, while for $D_2$ compaction, coefficient of determination of the trend line was $R^2=0.9815$ when testing at a drop height of 20 cm. Free fall test was carried out with the drop height adjusted from 10 cm to 50 cm at increments of 10 cm. This study intends to compare and analyze the correlation between the degree of compaction obtained from the unit weight of soil test based on the sand cone method and the depth of penetration of the penetration needle obtained from the FFPT meter. As such, it is expected that a portable penetration tester will make it easy to test the degree of compaction at many construction sites, and will lead to a reduction in time, equipment, and manpower which are the disadvantages of the current degree of compaction test, ultimately contributing to accurate and simple measurements of the degree of compaction as well as greater economic feasibility.

Definition of Tumor Volume Based on 18F-Fludeoxyglucose Positron Emission Tomography in Radiation Therapy for Liver Metastases: An Relational Analysis Study between Image Parameters and Image Segmentation Methods (간 전이 암 환자의 18F-FDG PET 기반 종양 영역 정의: 영상 인자와 자동 영상 분할 기법 간의 관계분석)

  • Kim, Heejin;Park, Seungwoo;Jung, Haijo;Kim, Mi-Sook;Yoo, Hyung Jun;Ji, Young Hoon;Yi, Chul-Young;Kim, Kum Bae
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.99-107
    • /
    • 2013
  • The surgical resection was occurred mainly in liver metastasis before the development of radiation therapy techniques. Recently, Radiation therapy is increased gradually due to the development of radiation dose delivery techniques. 18F-FDG PET image showed better sensitivity and specificity in liver metastasis detection. This image modality is important in the radiation treatment with planning CT for tumor delineation. In this study, we applied automatic image segmentation methods on PET image of liver metastasis and examined the impact of image factors on these methods. We selected the patients who were received the radiation therapy and 18F-FDG PET/CT in Korea Cancer Center Hospital from 2009 to 2012. Then, three kinds of image segmentation methods had been applied; The relative threshold method, the Gradient method and the region growing method. Based on these results, we performed statistical analysis in two directions. 1. comparison of GTV and image segmentation results. 2. performance of regression analysis for relation between image factor affecting image segmentation techniques. The mean volume of GTV was $60.9{\pm}65.9$ cc and the $GTV_{40%}$ was $22.43{\pm}35.27$ cc, and the $GTV_{50%}$ was $10.11{\pm}17.92$ cc, the $GTV_{RG}$ was $32.89{\pm}36.8$4 cc, the $GTV_{GD}$ was $30.34{\pm}35.77$ cc, respectively. The most similar segmentation method with the GTV result was the region growing method. For the quantitative analysis of the image factors which influenced on the region growing method, we used the standardized coefficient ${\beta}$, factors affecting the region growing method show GTV, $TumorSUV_{MAX/MIN}$, $SUV_{max}$, TBR in order. The result of the region growing (automatic segmentation) method showed the most similar result with the CT based GTV and the region growing method was affected by image factors. If we define the tumor volume by the auto image segmentation method which reflect the PET image parameters, more accurate and consistent tumor contouring can be done. And we can irradiate the optimized radiation dose to the cancer, ultimately.

Development of Kimchi Cabbage Growth Prediction Models Based on Image and Temperature Data (영상 및 기온 데이터 기반 배추 생육예측 모형 개발)

  • Min-Seo Kang;Jae-Sang Shim;Hye-Jin Lee;Hee-Ju Lee;Yoon-Ah Jang;Woo-Moon Lee;Sang-Gyu Lee;Seung-Hwan Wi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.366-376
    • /
    • 2023
  • This study was conducted to develop a model for predicting the growth of kimchi cabbage using image data and environmental data. Kimchi cabbages of the 'Cheongmyeong Gaual' variety were planted three times on July 11th, July 19th, and July 27th at a test field located at Pyeongchang-gun, Gangwon-do (37°37' N 128°32' E, 510 elevation), and data on growth, images, and environmental conditions were collected until September 12th. To select key factors for the kimchi cabbage growth prediction model, a correlation analysis was conducted using the collected growth data and meteorological data. The correlation coefficient between fresh weight and growth degree days (GDD) and between fresh weight and integrated solar radiation showed a high correlation coefficient of 0.88. Additionally, fresh weight had significant correlations with height and leaf area of kimchi cabbages, with correlation coefficients of 0.78 and 0.79, respectively. Canopy coverage was selected from the image data and GDD was selected from the environmental data based on references from previous researches. A prediction model for kimchi cabbage of biomass, leaf count, and leaf area was developed by combining GDD, canopy coverage and growth data. Single-factor models, including quadratic, sigmoid, and logistic models, were created and the sigmoid prediction model showed the best explanatory power according to the evaluation results. Developing a multi-factor growth prediction model by combining GDD and canopy coverage resulted in improved determination coefficients of 0.9, 0.95, and 0.89 for biomass, leaf count, and leaf area, respectively, compared to single-factor prediction models. To validate the developed model, validation was conducted and the determination coefficient between measured and predicted fresh weight was 0.91, with an RMSE of 134.2 g, indicating high prediction accuracy. In the past, kimchi cabbage growth prediction was often based on meteorological or image data, which resulted in low predictive accuracy due to the inability to reflect on-site conditions or the heading up of kimchi cabbage. Combining these two prediction methods is expected to enhance the accuracy of crop yield predictions by compensating for the weaknesses of each observation method.

Critical Thinking Disposition, Problem Solving Process, and Simulation- Based Assessment of Clinical Competence of Nursing Students in Pediatric Nursing (간호대학생의 비판적 사고성향, 문제해결과정 정도 및 아동간호 시뮬레이션 기반 임상수행능력)

  • Kim, Sunghee;Nam, Hyuna;Kim, Miok
    • Child Health Nursing Research
    • /
    • v.20 no.4
    • /
    • pp.294-303
    • /
    • 2014
  • Purpose: The purpose of this study was to identify the correlation of critical thinking disposition and problem solving process, and the simulation- based assessment of clinical competence based on a survey of college nursing students. Methods: In this descriptive correlation study, data for 214 nursing students were analyzed using t-test and Pearson correlation coefficients. Results: Critical thinking disposition, problem solving process, and simulation-based assessment of clinical competence averaged $3.76{\pm}0.46$ (out of 5), $3.67{\pm}0.47$ (5), and $1.51{\pm}0.17$ (2), respectively. A significant difference in scores for simulation-based assessment of clinical competence was found between the high-scoring group and low-scoring group in critical thinking disposition. A significant positive correlation was found between critical thinking disposition and nursing assessment, a sub-domain of clinical competence. Conclusion: The results suggest that success in simulation-based learning requires critical thinking disposition in the nursing students, and their critical thinking disposition plays a positive role in nursing assessment, which evaluates the patient's status in a complex situation. Simulation-based learning programs help assess the students' levels in their clinical judgement and performance, and identify their strengths and weaknesses so that the instructor can evaluate and improve the current teaching method.

The Classification and Regional Development's Direction of Rural Fishing Area Based on Administrative District (행정구역에 기초한 어촌지역의 유형구분과 지역개발방향)

  • Kim, Jung-Tae
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.4
    • /
    • pp.81-93
    • /
    • 2013
  • The selection of land for fishing village development project, and the standard used to classify fishing villages has been determined based on the guidelines developed by fishing village cooperatives. The approach fishing village cooperatives follows is likely to classify fishing villages without first reflecting on the overall development environment of the region, such as other industries and workers in the area. It also acts as a barrier for business promotion or evaluation, because the cooperatives do not match the administrative districts, which are the units of administration, and the main policy enforcement agent in regional development. Against this background, this study aimed to identify categories to situate the development direction, as well as the size and distribution of fishing villages based on eup, myeon, and dong administrative units as defined by the Fishing Villages and Fishery Harbors Act. This study was based on the Census of Agriculture, Forestry, and Fisheries of 2010, and analyzed 826 eups, myeon, and dongs with fishery households using the principal component analysis, and 2-Step cluster analysis methods. Therefore, 95% of the variance was explained using the covariance matrix for types of fishing villages, but it was analyzed as one component focusing on the number and ratio of fishery households, and used the cluster-type analysis, which focused on the sizes of fishing villages. The clusters were categorized into three types: (1) the development type based on the number of fishermen in the eups, myeons and dongs was analyzed as village size (682); (2) administrative district size (121); and (3) total eups, myeons and dongs (23), which revealed that the size of most fishing villages was small. We could explain 73% of the variance using the correlation coefficient matrix, which was divided into three types according to the three principal component scores, namely fishery household power, fishery industry power, and fishing village tourism power. Most fishing villages did not have a clear development direction because all business areas within the region were diversified, and 552 regions could be categorized under the harmonious development type, which is in need of balanced development. The fishery industry type typified by industrial strength included 159 regions in need of an approach based on industrialization of fishery product processing. Specialized production areas, which specialized in producing fishery products, were 115 regions with a high percentage of fishermen. The analysis results indicated that various situations in terms of size and development of fishing villages existed. However, because several regions exist in the form of small village units, it was necessary to approach the project in a manner that directed the diversification of regional development projects, such as places for local residents to relax or enjoy tourism experiences within the region, while considering the overall conditions of the relevant eups, myeons, and dongs. Reinforcement of individual support for fishermen based on the Fisheries Act must take precedence over providing support for fishermen through regional development. In addition, it is necessary to approach the development of fishing villages by focusing on industrializing the processing techniques of fishery products. Areas specialized in the production of fishery products are required to consider the facilities for fisheries production, and must make efforts to increase fishery resources, such as releasing fry.

A Study on the Stand Volume Estimation by Strand Method (Strand법(法)에 의한 임분재적추정(林分材積推定)에 관(關)한 연구(硏究))

  • Lee, Heung Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.2
    • /
    • pp.187-192
    • /
    • 1991
  • This study was carried out to estimate the stand volume for Japanese larch(Larix leptolepis) by Strand sampling method. The data collected for this study were based on the 380 sample plots from the field survey, which were distributed in the major part of Korea(Kyeongi, Kangweon, Chungbuk, Chungnam, Chunbuk and Kyeongbuki), and the plotless sampling instrument such as dendrometer, spiegel relascope and tele-relascope were used. The procedure for this study is summarized briefly as follows : 1. There were not only significant differences between volume estimation by Strand sampling method and that by plot survey method, and the relationship was y=bx, where b approached nearly 1. Therefore, the stand volume of Japanese larch could by estimated by Strand sampling method. 2. The value measured by three different plotless sampling instruments did not showed any significant differences between instruments and observers, density and instruments, and ground slope and instruments. 3. With the stand volume, basal area height showed the highest correlation and stand form height, average height, basal area per ha correlated with the volume in thier orders. 4. The best fitted equation of stand volume estimation with basal area height by relascope was as follow. log V=-0.0375+0.8910 log GH-1.5946 1/GH Stand volume table also was obtained using the above estimeated equation. 5. The relationship between estimated value and actual value was Y=bx, where b was nearly 1. The correlation coefficient was very high and the percentage of estimated error was 4.5%.

  • PDF

Evaluation of Partial Safety Factors for Tetrapod Armor Blocks Depending on the Shape Parameter of Extreme Wave Height Distributions (극치파고분포의 형상 모수에 따른 Tetrapod 피복블록의 부분안전계수 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck;Lee, Dong-Young;Jun, Ki-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.59-69
    • /
    • 2012
  • Probabilistic design is required to effectively consider the coastal environment of great uncertainty. However, designers who are familiar with the deterministic design method prefer a method which is similar to the existing method but is based on the probabilistic concept. Therefore, the partial safety factor method has been adopted as a new design method over the world. In Korea, Tetrapod is widely used for armoring rubble mound breakwaters. Even though the partial safety factor method developed in the United States and Europe covers Tetrapods, the limited wave and structure conditions in its development make the engineers hesitate about its use in practical breakwater design. In this study, partial safety factors for Tetrapod armor blocks have been developed by analyzing 116 breakwater cross-sections and wave conditions in 16 trade harbors and 15 coastal harbors with the FORM and optimal code calibration approach. Especially, partial safety factors have been proposed depending on the shape parameter of the Weibull extreme wave height distribution. For other types of extreme distributions, it is possible to apply the proposed partial safety factors using the relationship between skewness coefficient and shape parameter. Finally, the proposed partial safety factors have been applied to existing structures to show that they better satisfy the target reliability of the structures than previous partial safety factors.