• Title/Summary/Keyword: coefficient body

Search Result 991, Processing Time 0.026 seconds

Motion of rigid unsymmetric bodies and coefficient of friction by earthquake excitations

  • Zadnik, Branko
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.257-267
    • /
    • 1994
  • Motions of an unsymmetric rigid body on a rigid floor subjected to earthquake excitations with special attention to coefficient of friction are investigated. Motions of a body in a plane are classified (Ishiyama 1980) into six types, i.e. (1) rest, (2) slide, (3) rotation, (4) slide rotation, (5) translation jump, (6) rotation jump. Based upon the theoretical and experimental research work special attention is paid to the sliding of a body. The equations of motions and the behavior of coefficient of friction in the time of floor excitation are studied. One of the features of this investigation is the introduction and estimation of the "time dependent" coefficient of friction. It has been established that the constant kinetic coefficient of friction $${\mu}(kin){\sim_\sim}0.8{\mu}(stat)$$ does not give the appropriate results. The method for the estimation of the friction coefficient variation during the time is given.

The Concentration of Basic Self Governing Body's Rural Amenity Resources using the Gini's Coefficient - Centered on Sunchang County in Jeonbuk Province - (지니계수를 활용한 기초지방자치단체의 농촌어메니티 자원 분포 집중도 -전북 순창군을 사례로-)

  • Park, Jae-Chul
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.13 no.4
    • /
    • pp.59-66
    • /
    • 2011
  • This study aims to understand the degree of inequality of surveyed rural amenity resources according to resources and region in basic self governing body by estimating the Gini Coefficient and Lorenz Curve. Case Study was performed in Sunchang basic self governing body which full survey of rural amenity resources was completed. The Gini Coefficient was applied to measure the concentration of amenity resources in 11 Eup-Myun regions, Sunchang county of Jeonbuk province. The results demonstrate significantly different variation according to Eup-Myun regions and amenity variables. This result would be used as a basic data for rational rural planning based on amenity resources through identifying distributional concentration of rural amenity resources in basic self governing body.

Relation between Various Body Fluid Volumes and Body Weight or Lean Body Mass in the Rats (흰쥐의 체액량과 체중 및 무지방 체중 사이의 관계)

  • Ahn, Hyung-Che;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1969
  • Relationships between red ceil volume $(^{51}Cr-cell)$, total blood volume (red cell volume divided by hematocrit ratio), and extracellular fluid volume (SCN distribution space) and body weight (ranging between 73 and 384 grams) or lean body mass were studied in 59 nembutalized rats. Lean body mass was determined by means of underwater weighing method on rats clipped and eviscerated. There were positive correlations between body weight or lean body mass and the absolute values (in milliliters) of body fluid volumes. Body fluid volumes expressed on the body weight or lean body mass basis, however, showed negative correlations between body weight (grams) or lean body weight (grams) with one exception. Red cell volume expressed as % lean body mass showed a positive correlation with lean body mass. The other results are summarized as follows: 1. Body density of rats was 1.0561 $(range:\;1.0123{\sim}1.0781)$ and 19.8% body weight of total body fat was obtained. The mean value of lean body mass was 80.2% body weight 2. The correlation between body weight and lean body mass was high, namely, coefficient of correlation was r=.99. 3. The correlation between the absolute value of red cell volume (ml) and body weight showed a high correlation, namely, r= 92 and between the lean body mass coefficient of correlation was r=.93. On a weight basis, red cell volume was 2.67 ml/100 gm body weight or 3.48 ml/100 gm lean body mass. The coefficient of correlation between body weight (grams) and red cell volume (% body weight) was r=-. 30. The coefficient of correlation between lean body mass (grams) and red cell volume (% lean body mass) was r=. 50. Thus, the following regression equation was obtained. Red cell volume (% lean body mass)=. 00243 Lean body mass (gm)+3. 12. 4. Total blood volume was 6.06% body weight or 7.83% lean body mass. The correlation between these blood volume values and body weight or lean body mass were negative, namely, r= -.43 and r=-.42 respectively. 5. Extracellular volume (SCN space) was 30.0% body weight or 37.2% lean body mass. These percentage values showed negative correlations between body weight or lean body mass and coefficients of correlation were r=-.40 and r=-.54 respectively. 6. The rate of increase in body weight or lean body mass is accompanied by a smaller rate of increase in blood volume and extracellular fluid volume. The rate of increase in red ceil volume paralled that of lean body mass.

  • PDF

Asymptotic analysis of ignition of a semi-infinite body for a large activation energy (활성화 에너지가 매우 큰 경우에 점근법을 이용한 반무한체의 점화에 관한 연구)

  • 백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.703-707
    • /
    • 1989
  • The ignition of solid particle under strong convective heating has been investigated by applying an asymptotic analysis to a semi-infinite body for varying values of gas recovery temperature and convective heat transfer coefficient. It was found that if the scale of the reaction zone is much smaller than the characteristic length of the body size, then infinite body theory can be used to estimate the ignition delay time. Furthermore, the convective heat transfer coefficient was found to have more influence on predicting the ignition delay times of particle exposed to an incident shock wave rather than the gas recovery temperature.

Simulation of Three-Dimensional Turbulent Flows around an Ahmed Body-Evaluation of Turbulence Models- (Ahmed Body 주위의 3차원 난류유동 해석 - 난류모델의 평가)

  • Myong, H.K.;Jin, E.;Park, H.K.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.873-881
    • /
    • 1997
  • A numerical simulation has been carried out for three-dimensional turbulent flows around an Ahmed body. The Reynolds-averaged Navier-Stokes equation is solved with the SIMPLE method in general curvilinear coordinates system. Several k-.epsilon. turbulence models with two convective difference schemes are evaluated for the performance such as drag coefficient, velocity and pressure fields. The drag coefficient, the velocity and pressure fields are found to be changed considerably with the adopted k-.epsilon. turbulence models as well as the finite difference schemes. The results of simulation prove that the RNG k-.epsilon. model with the QUICK scheme predicts fairly well the tendency of velocity and pressure fields and gives more reliable drag coefficient. It is also demonstrated that the large difference between simulations and experiment in the drag coefficient is due to relatively high predicted values of pressure drag from vertical rear end base.

Numerical Analysis of Convective Heat and Mass Transfer around Human Body under Strong Wind

  • Li, Cong;Ito, Kazuhide
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2012
  • The overarching objective of this study is to predict the convective heat transfer around a human body under forced strong airflow conditions assuming a strong wind blowing through high-rise buildings or an air shower system in an enclosed space. In this study, computational fluid dynamics (CFD) analyses of the flow field and temperature distributions around a human body were carried out to estimate the convective heat transfer coefficient for a whole human body assuming adult male geometry under forced convective airflow conditions between 15 m/s and 25 m/s. A total of 45 CFD analyses were analyzed with boundary conditions that included differences in the air velocity, wind direction and turbulence intensity. In the case of approach air velocity $U_{in}=25m/s$ and turbulent intensity TI = 10%, average convective heat transfer coefficient was estimated at approximately $100W/m^2/K$ for the whole body, and strong dependence on air velocity and turbulence intensity was confirmed. Finally, the formula for the mean convective heat transfer coefficient as a function of approaching average velocity and turbulence intensity was approximated by using the concept of equivalent steady wind speed ($U_{eq}$).

Improving Accuracy of Measurement of Rigid Body Motion by Using Transfer Matrix (전달 행렬을 이용한 강체 운동 측정의 정확도 개선)

  • 고강호;국형석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.253-259
    • /
    • 2002
  • The rigid body characteristics (value of mass, Position of center of mass, moments and products of inertia) of mechanical systems can be identified from FRF data or vibration spectra of rigid body motion. Therefore the accuracy of rigid body characteristics is connected directly with the accuracy of measured data for rigid body motions. In this paper, a method of improving accuracy of measurement of rigid body motion is presented. Applying rigid body theory, ail translational and rotational displacements at a tentative point on the rigid body are calculated using the measured translational displacements for several points and transfer matrix. Then the estimated displacements for the identical points are calculated using the 6 displacements of the tentative Point and transfer matrix. By using correlation coefficient between measured and estimated displacements, we can detect the existence of errors that are contained in a certain measured displacement. Consequently, the improved rigid body motion with respect to a tentative point can be obtained by eliminating the contaminated data.

  • PDF

Assessment of Physical Activity Pattern, Activity Coefficient, Basal Metabolic Rate and Daily Energy Expenditure in Female University Students (일부 여대생의 활동에너지 소비패턴, 활동계수, 기초대사량 및 에너지 소비량 평가)

  • Park, Yoonji;Kim, Jung Hee
    • Korean Journal of Community Nutrition
    • /
    • v.18 no.1
    • /
    • pp.45-54
    • /
    • 2013
  • This study was conducted to investigate the physical activity pattern, activity coefficient, basal metabolic rate and energy expenditure of female university students. One-day activity diaries were collected from 95 female university students in Seoul. Body composition was measured by Inbody 720. Subjects spent 7 hr 8min on sleeping, 6 hr 31min on studying, 2 hr 50min on physiological activity, 2 hr 3min on leisure, 2 hr 2min on walking and jogging, 1 hr 58 min on commuting and 22min on house chores. The activity coefficient of these subjects was 1.58. The comparison of body composition of subjects according to PAL showed that body weight, body fat mass, arm circumference and arm muscle circumference of physically active group were significantly higher than those of the sedentary group. BMR calculated by Harris-Benedict (H-B) formula and DRI formula and BMR measured by Inbody 720 was 1375 kcal, 1306 kcal and 1209 kcal, respectively. Total energy expenditure (TEE) examined by one-day activity diaries and calculated by H-B formula and estimated energy requirement (EER) formula in DRI was 2102.1 kcal, 2184.4 kcal, and 2164.5 kcal, respectively. The Pearson correlation coefficient between TEE examined by one-day activity diaries and H-B TEE was 0.795 (p < 0.001) while that between TEE examined and DRI EER was 0.604 (p < 0.001). Overall data indicated that female university students seemed to be less active. Therefore it is recommended that universities develop good exercise programs for their students. Further studies are needed to generate more meaningful results with a larger sample size and using machine attached to the body, which are able to detect physical activity more accurately.

A Study on the pattern construction and body structure of Korean college girls on the basis of correlation coefficient of each body part. (여자대학생의 체형과 의복의 원형구조법에 관한 연구 -신분각부위의 상관 계수를 중심으로-)

  • 임원자
    • Journal of the Korean Home Economics Association
    • /
    • v.8 no.1
    • /
    • pp.21-35
    • /
    • 1970
  • 1. For the purpose of making the basic pattern construction 100 girls attending the Seoul National University College of Home Economics were measured in finding of body size and coefficient of correlation which would be used as one basis of this study. 2. Coefficient of correlation of each body part based on the breast width was shown as follows; Correlation coefficients of bust to waist and hip were high and those of bust to shoulder width, neck height, back width, and breast width were low. None of that was found between bust and back length. It was not recognized so scientific to adjust the basic pattern construction with figures proportioned by those of neck, shoulder width, breast width, and back width. 3. The method of basic pattern construction obtained by this research has been demonstrated in direct wearing since 1967. It is believed that the result will contribute a great benefit in teaching clothing as well as in mass production industry of ready-made garments.

  • PDF

Water body extraction in SAR image using water body texture index

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.337-346
    • /
    • 2015
  • Water body extraction based on backscatter information is an essential process to analyze floodaffected areas from Synthetic Aperture Radar (SAR) image. Water body in SAR image tends to have low backscatter values due to homogeneous surface of water, while non-water body has higher backscatter values than water body. Non-water body, however, may also have low backscatter values in high resolution SAR image such as Kompsat-5 image, depending on surface characteristic of the ground. The objective of this paper is to present a method to increase backscatter contrast between water body and non-water body and also to remove efficiently misclassified pixels beyond true water body area. We create an entropy image using a Gray Level Co-occurrence Matrix (GLCM) and classify the entropy image into water body and non-water body pixels by thresholding of the entropy image. In order to reduce the effect of threshold value, we also propose Water Body Texture Index (WBTI), which measures simultaneously the occurrence of repeated water body pixel pair and the uniformity of water body in the binary entropy image. The proposed method produced high overall accuracy of 99.00% and Kappa coefficient of 90.38% in water body extraction using Kompsat-5 image. The accuracy analysis indicates that the proposed WBTI method is less affected by the choice of threshold value and successfully maintains high overall accuracy and Kappa coefficient in wide threshold range.