• Title/Summary/Keyword: code equations

Search Result 651, Processing Time 0.026 seconds

The Inverse Design Technique of Propeller Blade Sections Using the Modified Garabedian-McFadden Method (Modified Garabedian-McFadden 방법을 이용한 프로펠러 날개 단면의 역설계 기법)

  • C.M. Jung;J.K. Cho;W.G. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.28-36
    • /
    • 1999
  • An efficient inverse design method based on the MGM(Modified Garabedian-McFadden) method has been developed. The 2-D Navier-Stokes equations are solved for obtaining the surface pressure distributions and coupled with the MGM method to perform the inverse design. The MGM method is a residual-correction technique, in which the residuals are the difference between the desired and the computed pressure distribution. The developed code was applied to several airfoil shapes and the propeller. It has been found that they are well converged to their targeting shapes.

  • PDF

The cavitating flow simulation in cryogenic fluid around 3D objects

  • Thai, Quangnha;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.264-267
    • /
    • 2010
  • This research focuses on the development of numerical code to deal with compressible two phase flow around three dimensional objects combined with cavitation model suggested by Weishyy et al. with k-e turbulent model. The cryogenic cavitation is carried out by considering the thermodynamic effect on physical properties of cryogenic fluids in physical point of view and implementing the temperature sensitivity in the energy equation of the government equations in numerical point of view, respectively. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils. Then, simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss numbers extending from single-phase flow conditions through the critical head break down point are discussed. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified.

  • PDF

Numerical study of ship motions and added resistance in regular incident waves of KVLCC2 model

  • Ozdemir, Yavuz Hakan;Barlas, Baris
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.149-159
    • /
    • 2017
  • In this study, the numerical investigation of ship motions and added resistance at constant forward velocity of KVLCC2 model is presented. Finite volume CFD code is used to calculate three dimensional, incompressible, unsteady RANS equations. Numerical computations show that reliable numerical results can be obtained in head waves. In the numerical analyses, body attached mesh method is used to simulate the ship motions. Free surface is simulated by using VOF method. The relationship between the turbulence viscosity and the velocities are obtained through the standard ${\kappa}-{\varepsilon}$ turbulence model. The numerical results are examined in terms of ship resistance, ship motions and added resistance. The validation studies are carried out by comparing the present results obtained for the KVLCC2 hull from the literature. It is shown that, ship resistance, pitch and heave motions in regular head waves can be estimated accurately, although, added resistance can be predicted with some error.

An Evaluation of Mechanical Properties of Ultra High Strength Concrete(UHSC) (초고강도 콘크리트의 재료역학적 특성 평가)

  • Lim Hee Jae;Shin Sung Woo;Ahn Jong Mun;Lee Kwang Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.281-284
    • /
    • 2004
  • The most important reason of using of ultra high strength concrete in super tall building is that ultra high strength concrete can reduce the section of members and control side sway effectively. However, the practical utilization of ultra high strength concrete is dependent not only on the production techniques, but also the overall preparation including proper code provisions, construction technique. The purpose of this study is to evaluate of mechanical properties of UHSC, such as modulus of elasticity, stress-strain behavior, modulus of rupture and tensile splitting strength. It is similar to normal or high strength concrete but necessary to discern the difference between normal or high strength concrete and ultra high strength concrete and modify existed equations. And in this study another important factor is to discern the difference according to member size, curing method in ultra high strength concrete experimentally.

  • PDF

Evaluation of Turbulence Models for A Compressor Rotor (축류압축기 회전차유동에 대한 난류모델의 성능평가)

  • Lee, Yong-Kab;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.179-186
    • /
    • 1999
  • Three-dimensional flow analysis is implemented to investigate the flow through transonic axial-flow compressor rotor(NASA R67), and to evaluate the performances of k-$\epsilon$ and Baldwin-Lomax turbulence models. A finite volume method is used for spatial discretization. And, the equations are solved implicitly in time with the use of approximate factorization. Upwind difference scheme is used for inviscid terms, but viscous terms are centrally differenced. The flux-difference-splitting of Roe is used to obtain fluxes at the cell faces. Numerical analysis is performed near peak efficiency and near stall. And, the results are compared with the experimental data for NASA R67 rotor. Blade-to-Blade Mach number distributions are compared to confirm the accuracy of the code. From the results, we conclude that k-$\epsilon$ model is better for the calculation of flow rate and efficiency than Baldwin-Lomax model. But, the predictions for Mach number and shock structure are almost same.

  • PDF

Development of a Simulation Method of Surge Transient Flow Phenomena in a Multistage Axial Flow Compressor and Duct System

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.189-199
    • /
    • 2013
  • A practical method of surge simulation in a system of a high-pressure-ratio multistage axial flow compressor and ducts, named SRGTRAN, is described about the principal procedures and the details. The code is constructed on the basis of one-dimensional stage-by-stage modeling and application of fundamental equations of mass, momentum, and energy. An example of analytical result on surge behaviors is included as an experimental verification. It will enable to examine the transient flow phenomena caused by possible compressor surges and their influences on the system components in plant systems including high-pressure-ratio axial compressors or gas turbines.

Implementation of the modified compression field theory in a tangent stiffness-based finite element formulation

  • Aquino, Wilkins;Erdem, Ibrahim
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.263-278
    • /
    • 2007
  • A finite element implementation of the modified compression field theory (MCFT) using a tangential formulation is presented in this work. Previous work reported on implementations of MCFT has concentrated mainly on secant formulations. This work describes details of the implementation of a modular algorithmic structure of a reinforced concrete constitutive model in nonlinear finite element schemes that use a Jacobian matrix in the solution of the nonlinear system of algebraic equations. The implementation was verified and validated using experimental and analytical data reported in the literature. The developed algorithm, which converges accurately and quickly, can be easily implemented in any finite element code.

Computation of Stress Field During Additive Manufacturing by Explicit Finite Element Method (외연적 유한요소법을 이용한 적층제조 공정 중 응력 장 변화 계산)

  • Yang, Seung-Yong;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.318-324
    • /
    • 2020
  • In the present work, an explicit finite element analysis technique is introduced to analyze the thermal stress fields present in the additive manufacturing process. To this purpose, a finite element matrix formulation is derived from the equations of motion and continuity. The developed code, NET3D, is then applied to various sample problems including thermal stress development. The application of heat to an inclusion from an external source establishes an initial temperature from which heat flows to the surrounding body in the sample problems. The development of thermal stress due to the mismatch between the thermal strains is analyzed. As mass scaling can be used to shorten the computation time of explicit analysis, a mass scaling of 108 is employed here, which yields almost identical results to the quasi-static results.

A Study of Local Preconditioning Method for Compressible Low Speed Flows (저속 압축성 유동에 대한 국소 예조건화 기법 적용 연구)

  • Ryu, Se-Hyun;Lee, Seung-Soo;Kim, Beom-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.152-160
    • /
    • 2006
  • Time marching methods are well-suited for high speed compressible flow computations. However, it is well known that the time marching methods suffer a slow down in convergence due to disparity in Eigenvalues. A local preconditioning method is one of numerical methods to enhance convergence characteristics of low mach number flows by modifying Eigenvalues of the governing equations. In this paper, the local preconditioning method of Weiss is applied to a 2 dimensional Navier-Stokes code and the efficiency of the preconditioning method is shown through a number of computational examples.

Fuel Cycle Analysis of Heavy Water-Moderated Reactor System

  • Paik, In-Kul;Kim, Jin-Soo;Lee, Chang-Kun;Chung, Chang-Hyun;Kim, Chang-Hyo
    • Nuclear Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.15-31
    • /
    • 1977
  • New conception of batch and period is defined appropriate for the on-power refuelling scheme of a heavy water-moderated reactor, A computer code (“HWRCOST”) is developed using nuclear fuel cycle economic equations based on the continuous energy calculation method. The fuel cycle cost of the CANDU-PHW reactor is calculated and sensitivity analyses are performed with variation of uranium ore price, fabrication cost, spent fuel permanent disposal expenses, and capacity fctor.

  • PDF