• Title/Summary/Keyword: code equations

Search Result 651, Processing Time 0.026 seconds

Numerical investigation of tip clearance effects on the performance of ducted propeller

  • Ding, Yongle;Song, Baowei;Wang, Peng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.795-804
    • /
    • 2015
  • Tip clearance loss is a limitation of the improvement of turbomachine performance. Previous studies show the Tip clearance loss is generated by the leakage flow through the tip clearance, and is roughly linearly proportional to the gap size. This study investigates the tip clearance effects on the performance of ducted propeller. The investigation was carried out by solving the Navier-Stokes equations with the commercial Computational Fluid Dynamic (CFD) code CFX14.5. These simulations were carried out to determine the underlying mechanisms of the tip clearance effects. The calculations were performed at three different chosen advance ratios. Simulation results showed that the tip loss slope was not linearly at high advance due to the reversed pressure at the leading edge. Three type of vortical structures were observed in the tip clearance at different clearance size.

Design of Group Delay Time Controller Based on a Reflective Parallel Resonator

  • Chaudhary, Girdhari;Choi, Heung-Jae;Jeong, Yong-Chae;Lim, Jong-Sik;Kim, Chul-Dong
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.210-215
    • /
    • 2012
  • In this paper, a group delay time controller (GDTC) is proposed based on a reflection topology employing a parallel resonator as the reflection termination. The design equations of the proposed GDTC have been derived and validated by simulation and experimental results. The group delay time can be varied by varying the capacitance and inductance at an operating frequency. To show the validity of the proposed circuit, an experiment was performed for a wideband code division multiple access downlink band operating at 2.11 GHz to 2.17 GHz. According to the experiment, a group delay time variation of $3{\pm}0.17$ ns over bandwidth of 60 MHz with excellent flatness is obtained.

Analysis of the relationship between operational condition and temperature distribution in a small incinerator (소형 소각로에서 운전조건과 온도분포 사이의 관계 분석)

  • Kim, Sung-Joon;Park, Jong-Hwan;Chun, Bong-Jun
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.63-70
    • /
    • 2000
  • One aims to find out how the operation condition of secondary inlet angle effects the temperature distribution inside a small incinerator. A finite volume commercial code, PHONICS, is used to simulate the temperature field in an incinerator. The computational grid system is constructed by Multi-Block technique. The governing equations based on the curvilinear coordinates are used. Numerical experiments are done with the five variations of secondary air inlet. The temperature distribution is quantified by the statistical deviation of temperature in an incinerator. The computational analysis says that the certain angle of secondary air inlet could improve the uniformity of temperature distribution in an incinerator.

  • PDF

Numerical Study on Three-Dimensional Flow in a Mixed-Flow Pump for Irrigation and Drainage (양배수용 사류펌프 내 삼차원 유동에 대한 수치적 연구)

  • Kim, Jin-Hyuk;Ahn, Hyoung-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • In this paper, numerical study on a mixed-flow pump for irrigation and drainage has been performed based on three-dimensional viscous flow analysis. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved by the commercial CFD code ANSYS CFX-11.0. A structured grid system is constructed in the computational domain, which has O-type grids near the blade surfaces and H/J-type grids in other regions. The numerical results were validated with experimental data for the heads and efficiencies at different flow coefficients. The efficiency at the design flow coefficient is evaluated with the variation of two geometric variables related to area of discharge and length of the vane in the diffuser. The results show that efficiency of the mixed-flow pump at the design flow coefficient is improved by the modifications of the geometry.

A Study on the Dynamic Load Model of Truss Bridge subjected to Moving Train Loads (열차하중을 받는 트러스교의 동적하중모형 연구)

  • 안주옥;박상준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.111-118
    • /
    • 1996
  • Dynamic load models which show the practical behavior of truss bridge subjected to moving train load are presented. Three basically approaches are available for evaluating structural response to dynamic effects : moving force, moving mass, and influence moving force and mass. Simple warren truss bridge model is selected in this research, and idealized lumped mass system, modelled as a planar structure. In the process of dynamic analysis, the uncoupled equation of motion is derived from simultaneous equation of the motion of truss bridge and moving train load. The solution of the uncoupled equations of motion is solved by Newmark-$\beta$ method. The results show that dynamic response of moving mass and static analysis considering the impact factor specified in the present railway bridge code was nearly the same. Generally, the dynamic response of moving force is somewhat greater than that of moving mass. The dynamic load models which are presented by this study are obtained relatively adequate load model when apply to a truss bridge.

  • PDF

Computation of Unsteady Flows over an Oscillating airfoil (진동하는 익형을 지나는 비정상 유동에 관한 계산)

  • Yang C. M.;Baek J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.125-130
    • /
    • 1999
  • A flowfields around a NACA0012 airfoil pitching about a 1/4 chord and plunging in vertical displacement are analyzed by solving two-dimensional compressible Navier-Stokes equations. A steady solution was solved first as a validation of the code used and the results were compared with experimental data. Then as a unsteady case, the oscillatory airfoil was solved to compare the results with experimental data. Oscillating rate of pitching and plunging motion was set to have analogy and the magnitude of plunging was set using the magnitude of pitching angle of attack. Finally combined pitching and plunging motion was solved to show the effect of 2 different types of oscillating motion of the airfoil.

  • PDF

Three Dimensional Numerical Analysis of the Walking Beam Type of a Hot Roll Reheat Furnace (Walking Beam형 열연 재가열로의 3차원 수치해석)

  • Kim J. K.;Huh G. Y.;Kim I. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.199-204
    • /
    • 1999
  • Three dimensional numerical analysis for the turbulent reactive flow and radiative heat transfer in the walking beam type of a reheat furnace in POSCO has been carried out by the industrial code FLUENT. Computations an based on the conservation equations of mass, momentum, energy and species with the $k-{\varepsilon}$ turbulence model and mixture fraction/PDF(Probability Density Function) approach for the combustion rate. Radiative heat transfer is computed by the discrete ordinates radiation model in combination with the weighted-sum-of-gray-gas model for the absorption coefficient of gas medium. The predicted temperture distribution in the reheat furnace and energy flow fractions are in reasonable agreement with the measurement data.

  • PDF

A COMPUTATIONAL STUDY ON THE CHARACTERISTICS OF FLOWFIELDS IN MICRONOZZLES (초소형 노즐 유동장에 관한 수치적 연구)

  • Seo, J.H.;Cho, H.G.;Lee, D.H.;Jung, S.C.;Myong, R.S.;Huh, H.I.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.38-43
    • /
    • 2007
  • Owing to the rapid progress in manufacturing technology of microscale devices, there are active research works in developing microscale propulsion systems. In this study, gas flows in nozzles with size of milli and sub-millimeter are investigated by using a CFD code based on the Navier-Stokes equations. The prediction results were compared with theoretical results of quasi-one-dimensional nozzle flow and experiment data. In general, theoretical values agree very well with the CFD results. However, theoretical values begin to deviate from the CFD and experimental data for relatively small Reynolds numbers and the nozzle shape with rectangular cross section. The primary reason for this discrepancy is due to the existence of the thick boundary layer at the wall in low Reynolds flows.

Investigation of the Instability of FGM box beams

  • Ziane, Noureddine;Meftah, Sid Ahmed;Ruta, Giuseppe;Tounsi, Abdelouahed;Adda Bedia, El Abbas
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.579-595
    • /
    • 2015
  • A general geometrically non-linear model for lateral-torsional buckling of thick and thin-walled FGM box beams is presented. In this model primary and secondary torsional warping and shear effects are taken into account. The coupled equilibrium equations obtained from Galerkin's method are derived and the corresponding tangent matrix is used to compute the critical moments. General expression is derived for the lateral-torsional buckling load of unshearable FGM beams. The results are validated by comparison with a 3D finite element simulation using the code ABAQUS. The influences of the geometrical characteristics and the shear effects on the buckling loads are demonstrated through several case studies.

A New Flux Tracking LVRT Control Scheme for Doubly Fed Induction Generators

  • Park, Sun-Young;Ahn, Hyung-Jin;Lee, Dong-Myung
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.306-312
    • /
    • 2013
  • Doubly fed induction generator (DFIG) systems widely used globally are highly sensitive to the grid disturbance due to the structure that the stator is connected to the grid. In the past, when a grid fault occurs in order to prevent a system, generators are separated from the grid regardless of the fault duration time. Recently, however, the grid connection standards(Grid Code)says that for the failures removed within a certain time, the generator remains operation without separating from the grid. This paper proposes a new flux tracking LVRT(Low-Voltage Ride Through) control based on system modeling equations. The validity of the proposed strategy has been demonstrated by computer simulations.