• Title/Summary/Keyword: code complexity

Search Result 596, Processing Time 0.027 seconds

Design and Implementation of Interference-Immune Architecture for Digital Transponder of Military Satellite (군통신위성 디지털 중계기의 간섭 회피 처리 구조 설계 및 구현)

  • Sirl, Young-Wook;Yoo, Jae-Sun;Jeong, Gun-Jin;Lee, Dae-Il;Lim, Cheol-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.594-600
    • /
    • 2014
  • In modern warfare, securing communication channel by combatting opponents' electromagnetic attack is a crucial factor to win the war. Military satellite digital transponder is a communication payload of the next generation military satellite that maintains warfare networks operational in the presence of interfering signals by securely relaying signals between ground terminals. The transponder in this paper is classified as a partial processing transponder which performs cost effective secure relaying in satellite communication links. The control functions of transmission security achieve immunity to hostile interferences which may cause malicious effects on the link. In this paper, we present an efficient architecture for implementing the control mechanism. Two major ideas of pipelined processing in per-group control and software processing of blocked band information dramatically reduce the complexity of the hardware. A control code sequence showing its randomness with uniform distribution is exemplified and qualification test results are briefly presented.

Parallel Multithreaded Processing for Data Set Summarization on Multicore CPUs

  • Ordonez, Carlos;Navas, Mario;Garcia-Alvarado, Carlos
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.111-120
    • /
    • 2011
  • Data mining algorithms should exploit new hardware technologies to accelerate computations. Such goal is difficult to achieve in database management system (DBMS) due to its complex internal subsystems and because data mining numeric computations of large data sets are difficult to optimize. This paper explores taking advantage of existing multithreaded capabilities of multicore CPUs as well as caching in RAM memory to efficiently compute summaries of a large data set, a fundamental data mining problem. We introduce parallel algorithms working on multiple threads, which overcome the row aggregation processing bottleneck of accessing secondary storage, while maintaining linear time complexity with respect to data set size. Our proposal is based on a combination of table scans and parallel multithreaded processing among multiple cores in the CPU. We introduce several database-style and hardware-level optimizations: caching row blocks of the input table, managing available RAM memory, interleaving I/O and CPU processing, as well as tuning the number of working threads. We experimentally benchmark our algorithms with large data sets on a DBMS running on a computer with a multicore CPU. We show that our algorithms outperform existing DBMS mechanisms in computing aggregations of multidimensional data summaries, especially as dimensionality grows. Furthermore, we show that local memory allocation (RAM block size) does not have a significant impact when the thread management algorithm distributes the workload among a fixed number of threads. Our proposal is unique in the sense that we do not modify or require access to the DBMS source code, but instead, we extend the DBMS with analytic functionality by developing User-Defined Functions.

Computational analysis of pollutant dispersion in urban street canyons with tree planting influenced by building roof shapes

  • Bouarbi, Lakhdar;Abed, Bouabdellah;Bouzit, Mohamed
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.505-521
    • /
    • 2016
  • The objective of this study is to investigate numerically the effect of building roof shaps on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, $P_{vol}=96%$. A three-dimensional computational fluid dynamics (CFD) model is used to evaluate air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier-Stokes (RANS) equations and the Explicit Algebraic Reynolds Stress Models (EARSM) based on k-${\varepsilon}$ turbulence model to close the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated by the wind tunnel experiment results. Having established this, the wind flow and pollutant dispersion in urban street canyons (with six roof shapes buildings) are simulated. The numerical simulation results agree reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated; this complexity is increased with the presence of trees and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped.

Protein-Protein Interaction Prediction using Interaction Significance Matrix (상호작용 중요도 행렬을 이용한 단백질-단백질 상호작용 예측)

  • Jang, Woo-Hyuk;Jung, Suk-Hoon;Jung, Hwie-Sung;Hyun, Bo-Ra;Han, Dong-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.851-860
    • /
    • 2009
  • Recently, among the computational methods of protein-protein interaction prediction, vast amounts of domain based methods originated from domain-domain relation consideration have been developed. However, it is true that multi domains collaboration is avowedly ignored because of computational complexity. In this paper, we implemented a protein interaction prediction system based the Interaction Significance matrix, which quantified an influence of domain combination pair on a protein interaction. Unlike conventional domain combination methods, IS matrix contains weighted domain combinations and domain combination pair power, which mean possibilities of domain collaboration and being the main body on a protein interaction. About 63% of sensitivity and 94% of specificity were measured when we use interaction data from DIP, IntAct and Pfam-A as a domain database. In addition, prediction accuracy gradually increased by growth of learning set size, The prediction software and learning data are currently available on the web site.

Advanced discretization of rock slope using block theory within the framework of discontinuous deformation analysis

  • Wang, Shuhong;Huang, Runqiu;Ni, Pengpeng;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.723-738
    • /
    • 2017
  • Rock is a heterogeneous material, which introduces complexity in the analysis of rock slopes, since both the existing discontinuities within the rock mass and the intact rock contribute to the degradation of strength. Rock failure is often catastrophic due to the brittle nature of the material, involving the sliding along structural planes and the fracturing of rock bridge. This paper proposes an advanced discretization method of rock mass based on block theory. An in-house software, GeoSMA-3D, has been developed to generate the discrete fracture network (DFN) model, considering both measured and artificial joints. Measured joints are obtained from the photogrammetry analysis on the excavation face. Statistical tools then facilitate to derive artificial joints within the rock mass. Key blocks are searched to provide guidance on potential reinforcement measures. The discretized blocky system is subsequently implemented into a discontinuous deformation analysis (DDA) code. Strength reduction technique is employed to analyze the stability of the slope, where the factor of safety can be obtained once excessive deformation of slope profile is observed. The combined analysis approach also provides the failure mode, which can be used to guide the choice of strengthening strategy if needed. Finally, an illustrated example is presented for the analysis of a rock slope of 20 m height inclined at $60^{\circ}$ using combined GeoSMA-3D and DDA calculation.

Design and Implementation of Real-Time Operating System for Sensor Networks (센서 네트워크용 실시간 운영체제의 설계 및 구현)

  • Kang, Hui-Sung;Jeon, Shang-Ho;Jeong, Geun-Jae;Lee, Soong-Yeol;Kim, Young-Hee;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.51-62
    • /
    • 2007
  • Recently microcontrollers are being used in sensor networks to handle sophisticated control and monitoring activities. As applications become more sophisticated, their design and development processes become more complex which consequently necessitates the use of an operating system to manage the complexity and provide an abstraction for portability of code. This paper presents a Low-power real-time operating system, called UbiFOS-USN, designed for sensor networks. We present some of the features that make UbiFOS-USN appropriate especially for small, low-cost microcontrollers typically found in sensor networks. Through experimental results, we show that UbiFOS-USN is quite efficient for a sensor network, both in terms of system performance and memory requirement.

Constant Time Algorithm for Alignment of Unaligned Linear Quadtrees on RMESH (RMESH구조에서 unaligned 선형 사진트리의 alignment를 위한 상수시간 알고리즘)

  • 김경훈;우진운
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.10-18
    • /
    • 2004
  • Quadtree, which is a hierarchical data structure, is a very important data structure to represent binary images. The linear quadtree representation as a way to store a quadtree is efficient to save space compared with other representations. Therefore, it has been widely studied to develop efficient algorithms to execute operations related with quadtrees. The operations of unaligned linear quadtrees, which are operations among the linear quadtrees with different origin, are able to perform the translated or rotated images efficiently. And this operations requires alignment of the linear quadtrees. In this paper, we present an efficient algorithm to perform alignment of unaligned linear quadtrees, using three-dimensional $n{\pm}n{\pm}n$ processors on RMESH(Reconfigurable MESH). This algorithm has constant-time complexity by using efficient basic operations to route the locational codes of quardtree on the hierarchical structure of $n{\pm}n{\pm}n$ RMESH.

A Study on Efficient CNU Algorithm for High Speed LDPC decoding in DVB-S2 (DVB-S2 기반 고속 LDPC 복호를 위한 효율적인 CNU 계산방식에 관한 연구)

  • Lim, Byeong-Su;Kim, Min-Hyuk;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1892-1897
    • /
    • 2012
  • In this paper, efficient CNU(Check Node Update) algorithms are analyzed for high speed LDPC decoding in DVB-S2 standard. In aspect to CNU methods, there are some kinds of CNU methods. Among of them, MP (Min Product) method is quite often used in LDPC decoding. However MP needs LUT (Look Up Table) that is critical path in LDPC decoding speed. A new SC-NMS (Self-Corrected Normalized Min-Sum) method is proposed in the paper. NMS needs only normalized scaling factor instead of LUT and compensates the overestimation of MP approximation. In addition, SC method is proposed. It gives a faster convergence toward a decoded codeword. If a message change its sign between two iterations, it is not reliable and to avoid to propagate noisy information, its module is set to 0. The performance of SC-NMS has a little degrade compare to MP by 0.1 dB, however considering computational complexity and decoding speed, SC-NMS algorithm is optimal method for CNU algorithm.

Adaptive SFBC-OFDM with Pre-equalizer under Time-varying Multipath Fading Channel (시변 다중 경로 페이딩 환경에서 사전 등화기 기반 적응 변조 SFBC-OFDM 시스템에 관한 연구)

  • 고정선;김낙명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.623-630
    • /
    • 2004
  • The adaptive modulation along with SFBC transmit diversity is a very effective method to increase the capacity of an OFDM system. However, severe performance degradation is resulted when inter-symbol interference is applied due to frequency-selective fading in mobile communications. In this paper, we have proposed and analyzed an OFDM system with SFBC transmit diversity and adaptive modulation scheme based on pre-equalization methods, in order to increase the data transmission rate in the downlink without much increase in system complexity. By introducing subchannel grouping and the pre-equalization method among adjacent subchannels, we could enhance the efficiency of the adaptive modulation a lot. By computer simulation, it has been proven that the proposed schemes show a better BER and throughput performance than the conventional schemes under severely time-varying multipath fading channel.

A Research of Anomaly Detection Method in MS Office Document (MS 오피스 문서 파일 내 비정상 요소 탐지 기법 연구)

  • Cho, Sung Hye;Lee, Sang Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • Microsoft Office is an office suite of applications developed by Microsoft. Recently users with malicious intent customize Office files as a container of the Malware because MS Office is most commonly used word processing program. To attack target system, many of malicious office files using a variety of skills and techniques like macro function, hiding shell code inside unused area, etc. And, people usually use two techniques to detect these kinds of malware. These are Signature-based detection and Sandbox. However, there is some limits to what it can afford because of the increasing complexity of malwares. Therefore, this paper propose methods to detect malicious MS office files in Computer forensics' way. We checked Macros and potential problem area with structural analysis of the MS Office file for this purpose.