• Title/Summary/Keyword: coaxial

Search Result 1,000, Processing Time 0.028 seconds

Measurements of Soot Volume Fraction Using Laser Induced Incandescence (레이저 유도 백열법을 이용한 화염 내부 매연 농도 측정)

  • Lee, Seung;Lee, Sang-Hup;Lee, Byeong-Jun;Hahn, Jae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.725-732
    • /
    • 2000
  • Laser induced incandescence (LII) method is frequently used to measure soot volume fraction in flames. In this study, experiments were performed to measure soot volume fraction in coaxial diffusion flame using LII method and calibrated with laser scattering/extinction method. The effects of laser intensity (>$1{\times}10^8W/cm^2$), laser wavelength (532nm, 1064nm) and detection wavelength (400nm, 600nm) on the LII signal were investigated. On the range of $4{\times}10^8{\sim}8{\times}10^8W/cm^2$ there were no effects of laser intensity on LII signal. Except these ranges, LII signal was increased with laser intensity. For the long gate width, the LII signals of the higher laser intensity (>${\vartheta}(GW/cm^2)$) cases had better correlation with soot volume fraction which were measured by laser extinction method compared with lower laser intensity cases. The errors of 2-dimensional cases at the calibration height were approximately 50% regardless of laser wavelength.

Shielding Effectiveness of Electromagnetic Interference in ABS/Nickel Coated Carbon Fiber and Epoxy/Cu-Ni Fabric Nano Carbon Black Composites (ABS/Nickel 코팅 탄소섬유와 Epoxy/Copper-Nickel 직조 섬유 복합재료의 전자파차폐 효과)

  • Han, Gil-Young;Jung, Woo-Chul;Yang, In-Young;Sun, Hyang-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.169-174
    • /
    • 2012
  • Electromagnetic interference(EMI) shielding effectiveness(SE) was investigated in of woven fabric made of epoxy/copper-nickel fabrics and nickel coated carbon fiber reinforced acrylonitrile-butadiene-styrene(ABS) composites. The coaxial transmission line method was used to measure the EMI shielding effectiveness of the composites. We designed and constructed a measuring system, consisting of a network analyzer and a device that plays the serves as a sample holder and at the same time as a transmission medium of the incident electromagnetic wave. The measurement of SE were carried out frequency range from 100MHz to 2GHz. It is observed that the SE of the composits is the frequency dependent increase with the increase in nickel coated carbon fibre volume fraction. The nickel coating with 20wt% ABS composite was shown to exhibit up to 60dB of SE. The result that nickel coated carbon fibre ABS composite can be used for the purpose of EMI shielding as well as for some microwave applications.

Development of Real-Fluid based Flamelet Modeling for Liquid Rocket Injector (액체로켓분사기 해석을 위한 실제유체 기반의 난류연소모델 개발)

  • Kim, Seong-Ku;Choi, Hwan-Seok;Park, Tae-Seon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.150-155
    • /
    • 2010
  • Liquid rocket injectors play crucial roles on propulsive performance, combustion stability, and heat transfer characteristics. Nevertheless, their developments have mainly relied on empirical methods and expensive hot-firing tests due to lack of fundamental understanding of high pressure combustion phenomena in the near-injector regions. The present study was motivated by recent efforts to develop reliable modeling of liquid rocket combustion. The turbulent combustion model based on the flamelet concept has been extended to take into account real-fluid behaviors occurred at supercritical pressures, and validated against measurements for a cryogenic nitrogen injection, a non-premixed turbulent jet flame at atmospheric pressure, and a LOx/$GH_2$ coaxial shear injector at a supercritical pressure.

  • PDF

Design and Implementation of Cold-Flow and Hot-Fire Test Stand of a Cryogenic Propellant Injector Used in LRE (초저온 추진제를 사용하는 액체로켓용 인젝터의 수류/연소시험장치 설계 및 제작)

  • Kim, Do-Hun;Park, Young-Il;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.61-65
    • /
    • 2010
  • To research and develop a liquid rocket engine injector, it needs empirical studies about the hydrodynamic and spray characteristics such as pressure drop, mixing and atomization. In this study, the design and implementation of lab-scale cold-flow/hot fire test stand which can supply cryogenic propellant and be controlled by time-critical LabVIEW cyclogram logic has been done. In order to visualize the spray of a liquid-centered swirl coaxial injector in cryogenic condition, LN2-GN2 cold-flow test has been done, and combustor assembly and thrust bed for LOX-$GCH_4$ hot-fire test have been fabricated.

  • PDF

Design of Wired and Wireless linkage Hybrid Sensor Network Model over CATV network (CATV망을 이용한 유무선 연동의 하이브리드 센서 네트워크 모델 설계)

  • Lee, Kyung-Sook;Kim, Hyun-Deok
    • Convergence Security Journal
    • /
    • v.12 no.3
    • /
    • pp.67-73
    • /
    • 2012
  • In this paper, in order to overcome the disadvantage of wireless-based sensor network, a hybrid sensor network using wired and wireless linkage is proposed. Proposed a wired and wireless linkage hybrid sensor network can compensate the defect of poor transmission at the indoor wireless environment, and can be free from interference between a wireless LAN and Bluetooth of the same frequency bandwidth due to an attribute of low-loss transmission at the CATV network. Also, proposed a wired and wireless linkage hybrid sensor network make use of CATV network which is well-built infrastructure, is more efficient to design network, assure a stability and high reliability of the sensor network as providing a stability for an inaccuracy and a predictable transmission link for the existing wireless network.

Intelligent Diagnosis System Based on Fuzzy Classifier (퍼지 분류기 기반 지능형 차단 시스템)

  • Sung, Hwa-Chang;Park, Jin-Bae;So, Jea-Yun;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.534-539
    • /
    • 2007
  • In this paper, we present the development of an intelligent diagnosis system for detecting faults of the low voltage wires. The wire detecting system based on the Time-Frequency Domain Reflectometry (TFDR) algorithm shows the condition of the wires. We analyze the reflected signal which is sent from the wire detecting system and classify the fault type of the wires by using the intelligent diagnosis system. Through the TFDR, generally, the conditions of the wires are classified into the three types - damage, open and short. In order to classify the fault type efficiently, we use the fuzzy classifier which is represented as IF-THEN rules. Finally, we show the utility of the proposed algorithm by performing the simulation which is based on the data of the coaxial cable.

Estimation of Fault Location on a Transmission Line via Time-Frequency Domain Reflectometry (시간-주파수 반사파 계측 방법을 이용한 전송선로의 결함 위치 추정)

  • Choe TokSon;Kwak Ki-Seok;Yoon Tae Sung;Park Jin Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.521-530
    • /
    • 2005
  • In this paper, a new high resolution reflectometry scheme, time-frequency domain reflectometry(TFDR), isproposed to detect and estimate a fault in a transmission line. Traditional reflectometry methodologies have been achieved either in the time domain or in the frequency domain only. However, the TFDR can jump over the performance limits of the traditional reflectometry methodologies because the acquired signal is analyzed in time and frequency domain simultaneously. In the TFDR, the new reference signal and the novel TFDR algorithm are proposed for analyzing the acquired signal in the time-frequency domain. Because the reference signal of Gaussian envelop chirp signal is localized in the time and frequency domain simultaneously, it is suitable to the analysis in the time-frequency domain. In the proposed TFDR algorithm, the time-frequency distribution function and the normalized time-frequency cross correlation function are used to detect and estimate a fault in a transmission line. That algorithm is verified for real-world coaxial cables which are typical transmission line with different types of faults by the TFDR system composed of real instruments. The performance of the TFDR methodology is compared with that o( the commercial time domain reflectomeoy(TDR) experiments, so that concludes the TFDR methodology can detect and estimate the fault with smaller error than TDR methodology.

Single-Feed, Wideband, Circularly Polarized, Crossed Bowtie Dipole Antenna for Global Navigation Satellite Systems

  • Tran, Huy Hung;Ta, Son Xuat;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.299-305
    • /
    • 2014
  • A wideband circularly polarized (CP) antenna with a single feed is proposed for use in global navigation satellite systems. Its primary radiation elements are composed of two orthogonal bowtie dipoles, which are equipped with double-printed vacant-quarter rings to allow direct matching of the antenna to a single $50-{\Omega}$ coaxial line and to produce CP radiation. The crossed bowtie dipole is appropriately incorporated with a planar metallic reflector to produce the desired unidirectional radiation pattern as well as to achieve a wideband characteristic in terms of impedance matching and axial ratio (AR) bandwidths. The designed antenna was fabricated and measured. The prototype antenna with an overall 1.2-GHz frequency size of $0.48{\lambda}_o{\times}0.48{\lambda}_o{\times}0.25{\lambda}_o$ produced a measured ${\mid}S_{11}{\mid}$<-10 dB bandwidth of 1.05-1.79 GHz and a measured 3-dB AR bandwidth of 1.12-1.64 GHz. It also showed right-hand CP radiation with a small gain variation (${\pm}0.3dB$) and high radiation efficiency (>93%) over the operational bandwidth.

Design of a 0.5~2 GHz Cavity-Backed Spiral Antenna (0.5~2 GHz 캐비티 백 스파이럴 안테나 설계)

  • Jeon, Nam-Du;Shin, Dong-Hoon;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.269-277
    • /
    • 2010
  • In this paper, the design of a 0.5~2 GHz cavity-backed spiral antenna is described. Combined arm pattern with a log spiral in the inner region and an Archimedean spiral in the outer region, a backing cavity, and a Marchand coaxial balun for feeding are designed. Termination resistors are used to improve antenna characteristics at the lower frequency of the operation frequency. VSWR, axial ratio, gain and HPBW(Half Power Beam Width) characteristics are simulated using CST's MWS. Finally, the validity of these approaches is verified by comparing the simulated results with the measured ones. Also, the measurement results are compared with the performance of a commercial spiral antenna.

The study of the breakup mechanism of a liquid jet by using a high speed camera (고속도카메라에 의한 액주의 분열기구에 관한 연구)

  • 김덕줄;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.708-716
    • /
    • 1989
  • The purpose of this study is to investigate the breakup mechanism of a liquid jet in a coaxial air flow. By using the high speed camera, measured were the instantaneous change of the wave length, amuplitude of disturbance, propagation velocity of wave and breakup length, and the relationships between those data were examined. The shape of the surface of the liquid jet appeared to be rather complicated and irregular. The growth rate of disturbance was not constant, and was changed at the moment of 3ms prior to the disintegration of the liquid jet. Simultaneously at this moment, the propagation velocities of the sequential waves were reversed and the wave length was rapidly decreased.