DOI QR코드

DOI QR Code

Design of a 0.5~2 GHz Cavity-Backed Spiral Antenna

0.5~2 GHz 캐비티 백 스파이럴 안테나 설계

  • Jeon, Nam-Du (Department of Radio Science & Engineering, Chungnam National University) ;
  • Shin, Dong-Hoon (Samsung Thales Co.) ;
  • Park, Dong-Chul (Department of Radio Science & Engineering, Chungnam National University)
  • Accepted : 2010.01.29
  • Published : 2010.03.31

Abstract

In this paper, the design of a 0.5~2 GHz cavity-backed spiral antenna is described. Combined arm pattern with a log spiral in the inner region and an Archimedean spiral in the outer region, a backing cavity, and a Marchand coaxial balun for feeding are designed. Termination resistors are used to improve antenna characteristics at the lower frequency of the operation frequency. VSWR, axial ratio, gain and HPBW(Half Power Beam Width) characteristics are simulated using CST's MWS. Finally, the validity of these approaches is verified by comparing the simulated results with the measured ones. Also, the measurement results are compared with the performance of a commercial spiral antenna.

본 논문에서는 0.5~2 GHz 캐비티 백 스파이럴 안테나 설계에 대하여 기술하였다. 안쪽 부분은 Archimedean 스파이럴로, 바깥 부분은 log 스파이럴로 구현된 암(arm) 패턴, 백 캐비티(backing cavity), 그리고 급전용으로 Marchand 동축형 밸런을 설계하였다. 동작 대역의 저주파 대역에서 안테나 특성을 향상시키기 위하여 종단 저항을 사용하였다. CST사의 MWS툴을 이용하여 시뮬레이션 하였고, VSWR, 축비(axial ratio), 이득 그리고 반전력 빔폭을 고찰하였다. 최종적으로 제작 및 측정을 통해 설계 방법의 타당성을 검증하였고, 상용 스파이럴 안테나와의 성능을 비교하였다.

Keywords

References

  1. V. H. Rumsey, "Frequency independent antenna", IRE National Convention Record, Pt. 1, pp. 114-118, 1957.
  2. J. D. Dyson, "The equiangular spiral antenna", IRE Trans. Antennas Propagat., pp. 181-187, Apr. 1959.
  3. W. L. Curtis, "Spiral antennas", IRE Trans. Antennas Propagat., pp. 298-306, May 1960.
  4. 조정래, 박진오, 유병석, 정운섭, 정우성, 박동철, "2-18 GHz 광대역 캐비티 백 스파이럴 안테나 설계", 한국전자파학회논문지, 19(10), pp. 1322-1332, 2008년 12월. https://doi.org/10.5515/KJKIEES.2008.19.10.1166
  5. Song Zhaohui, Liu Meijia, and Ding Zhiyong, "An improved design of microstrip Archimedean spiral antenna", International Conf. on Microwave and Millimeter Wave Tech. pp. 1-4, Apr. 2007.
  6. Du Yong-Xing, Qin Ling, and Xi Xiao-Li, "The analysis and simulation of microstrip spiral antenna for microwave hyperthermia", 3rd International Conf. on Bioinformatics and Biomedical Engineering, pp. 1-4, Jun. 2009.
  7. J. M. Bell, M. F. Iskander, "A low-profile Archimedean spiral antenna using an EBG ground plane", IEEE Antennas and Wireless Propagation Letters, vol. 3, issue 1, pp. 223-226, Jul. 2004. https://doi.org/10.1109/LAWP.2004.835753
  8. http://www.baesystems.com
  9. http://www.microwaveeng.com
  10. Baixiao Wang, Aixin Chen, "Design of an Archimedean spiral antenna", 8th Int. Symp. on Antennas, Propagation and EM Theory, pp. 348-351, Nov. 2008.
  11. C. Fumeaux, D. Baumann, and R. Vahldieck, "Finite-volume time-domain analysis of a cavity- backed Archimedean spiral antenna", IEEE Trans. Antennas and Propagat., vol. 54, issue 3, pp. 844-851, Mar. 2006. https://doi.org/10.1109/TAP.2006.869935
  12. 김영진, 정진미, 이병남, 김태현, 이규송, 김용훈, "밀리미터파 광대역 Cavity-Backed Spiral 안테나 설계 및 제작", 한국군사과학기술학회 종합학술대회논문지, 제주, 2009년 8월.
  13. Richard C. Johnson, Antenna Engineering Handbook. McGraw-Hill, pp. 14.6-14.7, 1993.
  14. J. W. Mclaughlin, D. A. Dunn, and R. W. Grow, "A wide-band balun", IRE Trans. Microwave Theory and Tech., vol. 6, pp. 314-316, Jul. 1958. https://doi.org/10.1109/TMTT.1958.1124565
  15. Geroge Oltman, "The compensated balun", IEEE Trans. on Microwave Theory Tech., vol. MTT-14. no. 3, pp. 112-119, Mar. 1966. https://doi.org/10.1109/TMTT.1966.1126188
  16. Brian C. Wadell, Transmission Line Design Handbook, Artech House Inc., 1999.