• Title/Summary/Keyword: coaxial

Search Result 1,000, Processing Time 0.027 seconds

A Study on the Electromagnetic Modeling and Network Analysis for GTEM Cell Design (GTEM 셀 설계를 위한 전자파 모델링 및 회로망 해석 기법 연구)

  • Lee, Woo-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.791-799
    • /
    • 2008
  • In this paper, the electromagnetic modeling and network analysis are proposed for design of GTEM cell operating from DC to 18 GHz. 3D electromagnetic numerical analysis models composed of the coaxial mode-converter for the feeder of GTEM cell, 5 m expanded rectangular coaxial transmission line, and the resistive termination load for current and field transmitted from the feeder are developed. Equivalent network model of feeder, transmission line, and termination load in the GTEM cell is also proposed, so the return loss of GTEM cell is calculated using S-parameters using the electromagnetic numerical analysis. To verify the proposed design method, the GTEM cell is designed, constructed and tested, with its size of $5{\times}2.5{\times}1.7\;m$ and operating frequency of $DC{\sim}18\;GHz$.

Basic Study on Lift-off Characteristics of Non-Premixed Flames of Methane-Air Jet in a Tube (관 내부 메탄-공기 분류 비예혼합 화염의 부상 특성 기초 연구)

  • Kim, Go-Tae;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.431-438
    • /
    • 2011
  • Flame lift-off conditions determine the operating conditions of burners. It is known that a flame can be lifted when the Schmidt number (Sc), which is the ratio of the dynamic viscosity to the mass diffusivity, is greater than unity. In this study, the flame lift-off characteristics of non-premixed flames of propane (Sc > 1) and methane (Sc < 1) in a coaxial outer air tube were experimentally compared. The experimental results indicated that stable lifted flames could be obtained even when Sc < 1 in a confined air tube. On the basis of the results of a simple numerical analysis, it was confirmed that a new flame stabilization mechanism exists in the tube. A velocity field is preferentially developed upstream of the flame, and it results in a new stabilization condition. This result can be very useful in explaining the stabilization of the flames of ordinary burners in which a flame is produced in a confined space.

Integrative Modeling of Wireless RF Links for Train-to-Wayside Communication in Railway Tunnel

  • Pu, Shi;Hao, Jian-Hong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.2
    • /
    • pp.19-27
    • /
    • 2012
  • In railway tunnel environment, the reliability of a high-data-rate and real-time train-to-wayside communication should be maintained especially when high-speed train moves along the track. In China and Europe, the communication frequency around 900 MHz is widely used for railway applications. At this carrier frequency band, both of the solutions based on continuously laid leaky coaxial cable (LCX) and discretely installed base-station antennas (BSAs), are applied in tunnel radio coverage. Many available works have concentrated on the radio-wave propagation in tunnels by different kinds of prediction models. Most of them solve this problem as natural propagation in a relatively large hollow waveguide, by neglecting the transmitting/receiving (Tx/Rx) components. However, within such confined areas like railway tunnels especially loaded with train, the complex communication environment becomes an important factor that would affect the quality of the signal transmission. This paper will apply a full-wave numerical method to this case, for considering the BSA or LCX, train antennas and their interacted environments, such as the locomotive body, overhead line for power supply, locomotive pantograph, steel rails, ballastless track, tunnel walls, etc.. Involving finite-difference time-domain (FDTD) method and uni-axial anisotropic perfectly matched layer (UPML) technique, the entire wireless RF downlinks of BSA and LCX to tunnel space to train antenna are precisely modeled (so-called integrative modeling technique, IMT). When exciting the BSA and LCX separately, the field distributions of some cross-sections in a rectangular tunnel are presented. It can be found that the influence of the locomotive body and other tunnel environments is very significant. The field coverage on the locomotive roof plane where the train antennas mounted, seems more homogenous when the side-laying position of the BSA or LCX is much higher. Also, much smoother field coverage solution is achieved by choosing LCX for its characteristic of more homogenous electromagnetic wave radiation.

A Study on Effective Bandwidth Algorithms for Mass Broadcasting Service with Channel Bonding (채널 결합 기반 대용량 방송서비스를 위한 유효 대역폭 추정 알고리즘에 대한 연구)

  • Yong, Ki-Tak;Shin, Hyun-Chul;Lee, Dong-Yul;You, Woong-Sik;Choi, Dong-Joon;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.3
    • /
    • pp.47-61
    • /
    • 2012
  • parallel transmitting system with channel bonding method have been proposed to transmit mass content such as UHD(Ultra High Definition) in HFC(Hybrid Fiber Coaxial) networks. However, this system may lead to channel resource problem because the system needs many channels to transmit mass content. In this paper, we analyze three effective bandwidth approximation algorithms to use the bonding channel efficiently. These algorithms are the effective bandwidth of Gaussian approximation method algorithm proposed by Guerin, the effective bandwidth based on statistics of video frames proposed by Lee and the effective bandwidth based on Gaussian traffic proposed by Nagarajan. We also evaluate compatibility of algorithms to the mass broadcasting service. OPNET simulator is used to evaluate the performance of the algorithms. For accuracy of simulation, we make mass source from real HD broadcasting stream.

Output Enhancement of Rhodamine 6G Dye Laser by Rhodamine 560 Energy Transfer Dye (Rhodamine 560을 이용한 rhodamine 6G 색소 레이저의 출력 증가)

  • 장원권;이민희
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.266-271
    • /
    • 1994
  • The output power and the energy of Rh-6G dye laser were enhanced by the mixture of Rh-560 dye whose fluorescence spectrum was coincident with the absorption spectrum of Rh-6G. The argon filled coaxial flashlamp used for pulsed pumping and argon laser for CW pumping. The concentration of Rh-6G dye was optimized in each pumping method before Rh-560 dye was mixed in Rh-6G dye solution. In the coaxial flash lamp pumped Rh-6G laser the output energy was increased about 30% when Rh-560 was mixed at 1% of Rh-6G concentration. In the case of argon laser pumping with multiline, the output power was increased 18% at the concentration of 2.5%. In the single line laser pumping, the output power was enhanced more efficiently. The power enhancements were 72% and 88% when the pumping wavelengths were 488 nm and 514.5 nm respectively. ively.

  • PDF

Three Degrees of Freedom Global Calibration Method for Measurement Systems with Binocular Vision

  • Xu, Guan;Zhang, Xinyuan;Li, Xiaotao;Su, Jian;Lu, Xue;Liu, Huanping;Hao, Zhaobing
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.107-117
    • /
    • 2016
  • We develop a new method to globally calibrate the feature points that are derived from the binocular systems at different positions. A three-DOF (degree of freedom) global calibration system is established to move and rotate the 3D calibration board to an arbitrary position. A three-DOF global calibration model is constructed for the binocular systems at different positions. The three-DOF calibration model unifies the 3D coordinates of the feature points from different binocular systems into a unique world coordinate system that is determined by the initial position of the calibration board. Experiments are conducted on the binocular systems at the coaxial and diagonal positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.573 mm, 0.520 mm and 0.528 mm at the coaxial positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.495 mm, 0.556 mm and 0.627 mm at the diagonal positions. This method provides a global and accurate calibration to unity the measurement points of different binocular vision systems into the same world coordinate system.

An Analysis of A Circularly Polarized Conformal Microstrip Parch Antenna Using The Unsplit Anisotropic Perfectly Matched Layer(UAPML) (비분리형 비등방성 완전 정합층(UAPML)을 이용한 원형편파 등각 마이크로스트립 패치 안테나의 해석)

  • 박동희;김정기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.813-823
    • /
    • 1998
  • This paper analyzed the circularly polarized conformal microstrip patch antennal using the unsplit anisotropic perfectly matched layer(UAPML) method. Also, this paper are treated effectively the edge and corner parts on the 3 dimensional UAPML. Especially, to analyze microstrip patch antennas with the coaxial feeder line, it was applied to mixed the UAPML with Mur's first order absorbing boundary condition. Therefore this paper suggest the new the method to mix the UAPML with Mur's first order absorbing boundary condition. The results show the time responses of electromagnetics $E_z$ and $H\chi'$, input impedances of coaxial cable and radiation patterns of strip parchs on the single and the array patchs with central frequencies 1.575 GHz, 1.778 GHz and 4.8 GHz in L-band and C-band for mobile communication. The results of this paper shows that its results was compared the Mur's first order abc and mixed the second order dispersion boundary condition(SDBC) with the Mur's first order absorbing boundary condition. In accordance with, the validity of the method is confirmed.

  • PDF

Development of Wideband Spatial Combined High Power Amplifier (광대역 공간 결합 고출력 전력증폭기 개발)

  • Lee, Ho-Seon;Park, Kwan-Young;Kong, Tong-Ook;Chun, Jong-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.286-297
    • /
    • 2017
  • This paper is a study of 6~18 GHz wideband high power amplifier which is composed of 10 single amplifier and coaxial type spatial power combiner. The property of this spatial power combiner is on a similar principle to antipodal antenna radiation mechanism. Therefore, the key structure of proposed spatial power combiner is the antipodal finline PCB board and the finline curve shape is numerically synthesized by using Klopfensein's optimum impedance taper. The measured CW output power of spatial combined high power amplifier is nearly 50 W. In conclusion we prove the good combining performance between the spatial power combiner and 10 single amplifier over 6~18 GHz frequency ranges. Also, we developed the key component PA and MFC MMIC which controls the phase and gain of the each amplifier, The main characteristic of MFC MMIC is to maximize combining efficiency of power amplifier.

A Study on the Influence of Coaxial Parallel Magnetic Field upon Plasma Jet (Plasma Jet의 동축평행 자계에 의한 영향에 관한 연구 ( 1 ))

  • 전춘생
    • 전기의세계
    • /
    • v.22 no.2
    • /
    • pp.57-69
    • /
    • 1973
  • The aim of this study was to investigate the behaviors of plasma jet under coaxial magnetic field in paralled with it for controlling optical characteristics and input power of plasma jet without impurity and instability of arc plasma column. Because the discharge characteristics of plasma jet were so distinctively different according to the existence or non-existence of magnetic field, the input power, luminous intensity of plasma jet and thermal efficiency were comparatively studied in respect of such variables as arc current, gap of electrode, quantity of argon flow, magnetic flux density, diameter and length of nozzle, with the use of several materials which were different in diameter and length of nozzel. The results were as follows; 1) The voltage tends to show a drooping characteristic at law current and then rises gradually. The luminous intensity of plasma jet increases exponentially with arc current. 2) Arc voltage increases and luminous intensity tends to decrease gradually as gap of electrode increases. 3) Arc voltage and luminous intensity tends to decrease gradually as gap of electrode increases. 3) Arc voltage and luminous intensity increase in accordance with the quantity of argon flow. 4) At first step, arc voltage increases to maximum value with the growth of flux density and then tends to show a gradual decrease. Luminous intensity decreases with the growth flux density. 5) Arc voltage decreases as the constriction length of nozzle increases, maximum decrease is shown at the constriction length of 20(mm) and it increases beyond that value. The luminous intensity decreases as the constriction length grows. 6) Arc voltage and luminous in tensity increase with the growth of diameters of nozzle. 7) Thermal efficiency has values between 50% and 75%, being influenced by arc current, the quantity of argon flow, flux density, the length of electrode gap and the constriction length of nozzle.

  • PDF

Modelling and Transient Analysis of a 3-Phase Multi-Layer HTS Coaxial Cable using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 3 상 다층 고온 초전도 케이블의 모델링 및 과도 해석)

  • Lee, Jun-Yeop;Lee, Seok-Ju;Park, Minwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.1
    • /
    • pp.25-30
    • /
    • 2020
  • Three-phase multi-layer high temperature superconducting coaxial (TPMHTSC) cable is being actively studied due to advantages such as the reduction of the amount of superconducting wire usage and the miniaturization of the cable. The electrical characteristics of TPMHTSC cables differ from those of conventional superconducting cables, so sufficient analysis is required to apply them to the actual system. In this paper, the authors modeled 22.9 kV, 60 MVA TPMHTSC cable and analyzed the transient characteristics using a PSCAD/EMTDC-based simulation. As a result, when a fault current flows in TPMHTSC cable, most of the fault current is bypassed through the copper former layers. At this time, the total cable temperature increased by about 5 K. Through this study, we can verify the reliability of the TPMHTSC cable against the transient state, and it can be helpful for the practical application of the cable in the future.