• Title/Summary/Keyword: coating structure

Search Result 1,218, Processing Time 0.027 seconds

Studies on the Coating Structure and Printability of Coated Paper(II) - Effect of Ionic Groups of Latices on Coating Structure - (도공층 구조 및 도공지의 인쇄적성에 관한 연구(II) - 라텍스 이온기가 도공층 구조에 미치는 영향 -)

  • Lee, Yong-Kyu;Park, Kyu-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.10-16
    • /
    • 1997
  • This study was carried out to improve coating structure by controlling the electrostatic interaction of coating components and by changing the coating structure of coated paper prepared with amphoteric and anionic latices. The results indicated that amphoteric latex copolymerized with carboxylic and amine groups had stronger interaction with other coating components than anionic latex with branched carboxylic group by controlling pH. These properties of amphoteric latex showed positive effects on viscosity rheology, and supernatant sediment of coating color. The coated paper using amphoteric latex had also produced more porous and smoother coverage of the coating layer than that using anionic latex. This porous and smooth coating layer showed better optical properties and printability than those of anionic latex such as opacity, porosity, ink set-off, and wet ink receptivity.

  • PDF

Effect of Binder on Coating Layer Structure and Surface Strength of Coated Paper (바인더가 도공층 구조 및 도공지의 표면 강도에 미치는 영향)

  • 이용규;황석우
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.63-72
    • /
    • 1998
  • This research was intended to evaluate the effect of carboxymethylcellulose(CMC) on the coating structure and surface strength of coated paper prepared with amphoteric latex based coating color. Printability and optical properties of coated papers were compared. The influence of the consolidation behavior of coating color on the coating structure and the surface strength of coated paper was investigated. Compared with the conventional anionic latex, amphoteric latex formed bulkyer, smoother and more porous coating layer, which in turn, restricted binder migration in the coating layers, and facilitated immobilization of coating colors. However, dry pick strength of coated paper was decreased. The addition of CMC to these systems had strongly influenced on. the consolidation behavior and porosity in the dry state, through forming the network structure of coating layers by the interaction with amphoteric latex particles. Thus, printability and optical properties of coated papers were improved. Results indicated that amphoteric latex could be practically applied to the paper coating to improve printability and optical properties of coated papers.

  • PDF

Effects of Pigment Blending and Thickener Characteristics on Calendering Response and Structure of Coated Paper-Effect of Pigment Blending on Coating Properties- (도공 안과의 혼합과 증점제의 특성과 도공지의 광택 발현성과 구조적 특성에 미치는 영향)

  • 박종열;이학래;김병수;정현채
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.2
    • /
    • pp.62-73
    • /
    • 1998
  • The aim of this work was to investigate the effects of pigment composition on the calendering response and structure of the coated paper. Calendering response of the coated paper was determined from the gloss values of the uncalendered and calendered coated papers, and the relationship between gloss and coating structure was discussed. The surface and cross section of the coating layer was observed using a scanning electron microscope to examine the coating structure. Coating layers were hardened in epoxy resin and polished with carbimet paper disc for preparing SEM samples. Maximum calendering response was obtained for the coated paper prepared from 80pph of clay and 20pph of ground calcium carbonate (GCC) as pigments. Photomicrographs of the surface and cross section of the coating layer show that clay tends to form dense coating structure, while GCC tends to form bulky coating layer.

  • PDF

Studies on the Pore of Coating Layer and Printability(II) -Effects of Pigment Shape on Pore of Coating Layer- (도공층의 공극과 인쇄적성에 관한 연구(제2보) -안료의 입자형태가 미치는 영향-)

  • 김창근;이용규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.53-61
    • /
    • 2001
  • This study was carried out to evaluate the effect of coating pigments on the printability by investigating the pore structure of casting layer such as the number, size and distribution of pores and the pore rate. The coating structure was mainly determined by the interaction between pigment and binder. It means that the structure of pores was chiefly affected by the shape and size distribution of pigments and their packing rate. The physical properties of pore have close relationships with ink set-off, the speed of ink penetration and printing gloss. The results suggested that the rate and number of pores were greatly affected by the particle size distribution and shape of pigments. The rate of pore increased with the reduction of particle size distribution of pigments. Calcite was effective to improve greatly the printability of coated paper.

  • PDF

Effect of Substrate Porosity on Double Coating Structure (기질의 공극성의 이중 도공 구조에 미치는 영향)

  • 김병수;박중열;정현찬
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.4
    • /
    • pp.79-84
    • /
    • 1998
  • The process of double coating consists of bottom coating using relatively coaser pigments to improve characteristics of base paper and top coating using finer pigments to cover unevenness of the bottom coating and to give various function of the coated paper. The structure of precoating is influenced not only by its components, but also characteristics of base paper, Moreover pore size and its size distribution of precoating are expected to influence the top coating properties, but this is not well understood. Coating and printing operations involve the application of pigmented fluid on top of a porous substrate. The porosity of the substrate has been shown to influence the properties of the coating, but a good understanding of the mechanisms is lacking in the literature. The role of pore size and void volume on top coating structure is unclear.

  • PDF

A Study on the Anti-Reflection Coating Effects of Polymer Eyeglasses Lens (폴리머 안경렌즈의 반사방지 코팅효과 연구)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.216-221
    • /
    • 2017
  • Reducing optical reflection in the visible light range, in order to increase the share of transmitted light and avoid the formation of ghost images in imaging, is important for polymer lens applications. In this study, polymer lenses with refractive indices of n=1.56, 1.60, and 1.67 were fabricated by the injection-molding method with a polymer lens monomer, dibutyltin dichloride as the catalyst and an alkyl phosphoric ester as the release agent. To investigate their anti-reflection (AR) effects, various AR coating structures, viz. a multi-layer AR coating structure, tri-layer AR coating structure with a discrete approximation Gaussian gradient-index profile, and tri-layer AR coating structure with a quarter-wavelength approximation, were designed and coated on the polymer lens by an E-beam evaporation system. The optical properties of the polymer lenses were characterized by UV-visible spectrometry. The material properties of the thin films, refractive index and surface roughness, were analyzed by ellipsometry and AFM, respectively. The most effective AR coating structure of the polymer lens with low refractive index, n=1.56, was the both side coating of multi-layer AR coating structure. However, both side coating of the tri-layered discrete approximation Gaussian gradient-index profile AR coating structure gave comparable results to the both side coating of the multi-layer AR coating structure for the polymer lens with a high refractive index of n=1.67.

Development of Surface Treatment for Hydrophobic Property on Aluminum Surface (알루미늄의 발수 표면처리 기술 개발)

  • Byun, Eun-Yeon;Lee, Seung-Hun;Kim, Jong-Kuk;Kim, Yang-Do;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.4
    • /
    • pp.151-154
    • /
    • 2012
  • A hydrophobic surface has been fabricated on aluminum by two-step surface treatment processes consisting of structure modification and surface coating. Nature inspired micro nano scale structures were artificially created on the aluminum surface by a blasting and Ar ion beam etching. And a hydrophobic thin film was coated by a trimethylsilane ($(CH_3)_3SiH$) plasma deposition to minimize the surface energy of the micro nano structure surface. The contact angle of micro nano structured aluminum surface with the trimethylsilane coating was $123^{\circ}$ (surface energy: 9.05 $mJ/m^2$), but the contact angle of only trimethylsilane coated sample without the micro nano surface structure was $92^{\circ}$ (surface energy: 99.15 $mJ/m^2$). In the hydrophobic treatment of aluminum surface, a trimethylsilane coated sample having the micro nano structure was more effective than only trimethylsilane coated sample without the micro nano structure.

Effect of the Raw Material and Coating Process Conditions on the Densification of 8 wt% Y2O3-ZrO2 Thermal Barrier Coating by Atmospheric Plasma Spray

  • Oh, Yoon-Suk;Kim, Seong-Won;Lee, Sung-Min;Kim, Hyung-Tae;Kim, Min-Sik;Moon, Heung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.628-634
    • /
    • 2016
  • The 8 wt% yttria($Y_2O_3$) stabilized zirconia ($ZrO_2$), 8YSZ, a typical thermal barrier coating (TBC) for turbine systems, was fabricated under different starting powder conditions and coating parameters by atmospheric plasma spray (APS) coating process. Four different starting powders were prepared by conventional spray dry method with different additive and process parameter conditions. As a result, large- and small-size spherical-type particles and Donut-type particles were obtained. Dense structure of 8YSZ coating was produced when small size spherical-type or Donut-type particles were used. On the other hand, 8YSZ coating with a porous structure was formed from large-size spherical-type particles. Furthermore, a segmented coating structure with vertical cracks was observed after post heat treatment on the surface of dense structured coating by argon plasma flame at an appropriate gun distance and power condition.

Investigation on Relationship Between Pore Structure of Coating Layer and Ink Residual Behavior - Focused on the Effect of Pigments and Inks - (도공층의 공극성이 인쇄후 잉크의 잔류 거동에 미치는 영향 - 안료와 잉크의 효과 -)

  • 김병수;정현채;박종열
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.53-58
    • /
    • 2002
  • This paper was performed to investigate the effect of pore structure on ink residual behavior. To prepare different coating structures as substrates against inks, fine, medium and coarse calcium carbonate were used in the coating color. It is well known ink properties can affect to print qualities. After printing on the coated paper, ink layer can consider as third structure addition to paper and coating layer. To compare effect of ink properties on the surface structure and print qualities, several properties of ink were also adopted as raw material. Particle size of pigment effect on gloss evaluation of coated paper increased with calendering. It was shown that ink transfer rate increased as surface of the sample was smooth. The ink contained low viscosity resin evaluated more print gloss. Finer pigment particle size, smaller pore size and higher porosity. Pore volume of coated paper was slightly decreased with printing as the coating was prepared with the finest particle size. However, it founded that ink resin could not affect on pore volume and distribution of printed paper

Analysis of Wear Properties for $Ni_{3}Al$ Layer coated on Ferrous Materials by Diffusion Treatment after Combustion Synthesis at low Temperature (저온 연소합성 후 확산 열처리한 $Ni_{3}Al$ 금속간화합물 코팅층의 미끄럼 마모거동)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • Coating brittle intermetallic compounds on metal can enlarge the range of their use. It is found that intermetallic compound coating layers made by only combustion synthesis in an electric furnace have porous multi-phase structures containing several intermediate phases, even though the coating layers show good wear resistance. In this study, dense $Ni_{3}Al$ single phase layer corresponding to the initial composition of the mixed powder is coated on two different ferrous materials by the diffusing treatment after combustion synthesis. After- ward, sliding wear behaviors of the coating layer are evaluated in comparison with that of the coating layer with porous multi-phase structure made by only combustion synthesis. As a result, the wear properties of the coating layer composed of dense $Ni_{3}Al$ single phase are considerably improved at the range of low sliding speed com- pared with that of the coating layer with porous multi-phase structure, particularly in the running-in wear region. This is attributed to the fact that wear of the coating layer is progressed by shearing as a sequence of adhesion, not by occurring of pitting on the worn surface due to having dense structure without pores.