• Title/Summary/Keyword: coating properties

Search Result 2,855, Processing Time 0.029 seconds

Effects of Pretreatment and Ag Coating Processes Conditions on the Properties of Ag-Coated Cu Flakes (Ag 코팅 Cu 플레이크의 제조에서 전처리 및 Ag 코팅 공정 변화의 효과)

  • Kim, Ji Hwan;Lee, Jong-Hyun
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.617-624
    • /
    • 2014
  • To elucidate the effects of a pretreatment process on the uniformity of Ag electroless plating on Cu flakes, pretreatment time was mainly considered with a mixed solution of 0.15 M ammonium hydroxide and 0.0375 M ammonium sulphate. Optical inspection of Ag-coated Cu flakes determined that the optimal pretreatment time is 120 s. Repetition of the sequence in which Ag plating was done immediately after the pretreatment of 120 s clearly enhanced the plating uniformity. Scanning electron microscopy revealed that holes were formed irregularly on some Cu flakes during the period from the asdropping of an Ag precursor solution to 5 min. The hole formation was judged to be due to continuous removal of Cu on the local surfaces by the repetitive formation and elimination of $Cu_2O$ or $Cu(OH)_2$ layers. However, the increase of the amount of Ag coating suppressed the hole creation and increasingly enhanced the antioxidant property.

A Study on Improvement of Material Characteristics by Control of Ion Implantation (이온주입 제어에 의한 재료특성 개선에 관한 연구)

  • Yang, Young-Joon;Lee, Chi-Woo;Fujita, Kazuhisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1178-1184
    • /
    • 2008
  • In this study, techniques of ion implantation were used in order to improve the characteristics of metal materials such as the oxidation and wear resistant. In particular it is necessary to develope their oxidation and wear resistant that could be used in severe environmental conditions. There are mainly two elementary technologies including ion implantation and/or thin film coating. Ion implantation method was performed for surface modification. As a result, it was found that some ion implantations methods such as Nb, high-temperature Nb ion implantation and Nb+C combined implantation are somewhat effective for improving the oxidation resistance of TiAl alloy. Furthermore, the fluorine PBII treatment is more effective for improving the oxidation resistance of the TiAl alloy with three-dimensional shapes. The implantation of boron ion into thin film of TiN was also effective for improving the properties of materials like high temperature wear resistance. TiCrN film was applied to the actual seal ring for steam turbines, and it was observed that its sliding property showed a successfully good performance.

Temperature Characteristics of the Modified GAC by Microwave Irradiation and Benzene Adsorption (마이크로파 조사에 따른 개질화 활성탄의 온도특성 및 벤젠흡착)

  • Choi Sung-Woo;Kim Yoon-Kab
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.579-586
    • /
    • 2006
  • The purposes of this paper were to monitor the temperature rising courses and spark discharge of the modified granular activated carbon (GAC) by microwave (MW) irradiation and to evaluate absorption of benzene. The GAC coated on $SiO_2$, boron, talc, ferrite was named as the modified GAC. Thermal and spark discharge measurement of virgin GAC and modifed GAC has been carried out using a MW device operating at 2450 MHz under various energy conditions. The results of this paper as follows. First, the modified GAC is more efficient than the virgin GAC in temperature control. Temperature gradient of the modified GAC is more lower than that of virgin GAC. The temperature gradient of GAC was observed in the following order : virgin GAC, Mn-Zn ferrite/GAC, Ni-Zn ferrite,/GAC, $SiO_2/GAC$, Boron/GAC, Talc/GAC. Second, the spark discharge of the modified GAC was diminished, compared with that of virgin GAC. Because of its excellent electrical insulating properties, the coating material prevents the spark discharge. Finally, the benzene adsorption capacity of the modified GAC decreased due to diminishing of adsorption site by the coating material. Considering the temperature gradient and spark discharge of GAC, the GAC coated $SiO_2$ would be appropriate absorbent under irradiation of MW.

Fabrication and Properties of Au fine Particles Doped ZrO2 Thin Films by the Sol-gel Method (졸-겔법에 의한 Au 미립자 분산 ZrO2 박막의 제조와 특성)

  • 이승민;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.475-480
    • /
    • 2003
  • Nanocomposite of Au doped ZrO$_2$ films was prepared, which could be used as non-linear optic materials, selective absorption and transmission films. After heat treatment of prepared thin film by dip-coating method, the characteristics were investigated by X-ray diffraction, UV-VIS Spectrometer, Atomic Force Microscopy (AFM) and Scanning Electron Microscope (SEM). Film thickness was about 150 nm, the Au particle size was 15~35 nm. The thin film had a smooth surface roughness about 1.06 nm. Nonlinearity optics was found that films showed absorption peak at 600~650 nm visible region by plasma resonance of Au metal particles.

Investigation on the Preparing and Coating Properties of Water-based Red Ink for PET Synthetic Suede (PET 인조 스웨이드 적용을 위한 적색 수성 잉크의 제조 및 코팅 특성 연구)

  • Lee, Hye Mi;Kim, Dae Geun;Kim, Ah Rong;Lee, Jeong Hoon;Lee, Seung Geol
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.202-210
    • /
    • 2017
  • In recent years, the water-based ink have been widely used in various industrial applications due to environmental problems. Dispersibility of the pigment for applications of the water-based ink is the one of the most important technical factors to produce uniform color products. Thus, in this study, the three-roll mill process was used to improve the dispersion of the water-based ink. The results indicated that the three-roll mill reduced the size of pigment particles in the ink more than 50%. In addition, the dispersant showed an important role to maintain the dispersion stability of the pigment in the water-based ink over 120 hours. We also confirmed the optimum contents of the ink stock solution, drying temperature and drying time by the colorimeter and colorfastness tests on produced PET synthetic suedes.

Tribological Characteristics of Si-Diamond-Like Carbon Films in a Condition with Carbon Nanotube Ink Lubricant (Carbon Nanotube 잉크 환경에서의 Si-Diamond-Like Carbon 박막의 내마모 특성)

  • Jang, Kil-Chan;Kim, Tae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.149-155
    • /
    • 2011
  • We investigated tribological characteristics of diamond-like carbon (DLC) in a condition with carbon nanotube (CNT) content of 1wt% in aqueous solution. Si-DLC films were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process on Al6061 aluminum alloy. In this study, the deposition of DLC films was carried out in vacuum with a chamber pressure of 10-5 to 10-3 Torr achieved by mechanical pump followed by turbo molecular pump. The surface adsorbed oxygen on the Aluminum substrates was removed by passing Ar gas for 10 minutes. The RF power was maintained at 500W throughout the experiment. A buffer layer of HMDSO was deposited on the substrate to improve the adhesion of DLC coating. At this point CH4 gas was introduced in the chamber using gas flow controller and DLC coating was deposited on the buffer layer along with HMDSO for 50 min. The thickness of 1 ${\mu}m$ was obtained for DLC films on aluminum substrates The tribological properties of as synthesized DLC films were analyzed by wear test in the presence of dry air, water and lubricant such as CNT ink.

Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells (결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구)

  • Lee Eun-Joo;Lee Soo-Hong
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.4-8
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient Reff lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

The electrochromic properties of tungsten oxide thin films coated by a sol-gel spin coating under different reactive temperature (솔-젤 스핀 코팅에 의해 증착된 텅스텐 산화물 박막의 반응 온도에 따른 전기변색특성 연구)

  • 심희상;나윤채;조인화;성영은
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.128-128
    • /
    • 2003
  • Electrochromism (EC) is defined as a phenomenon in which a change in color takes place in the presence of an applied voltage. Because of their low power consumption, high coloration efficiency, EC devices have a variety of potential applications in smart windows, mirror, and optical switching devices. An EC devices generally consist of a transparent conducting layer, electrochromic cathodic and anodic coloring materials and an ion conducting electrolyte. EC has been widely studied in transition metal oxides(e.g., WO$_3$, NiO, V$_2$O$\sub$5/) Among these materials, WO$_3$ is a most interesting material for cathodic coloration materials due to its lush coloration efficiency (CE), large dynamic range, cyclic reversibility, and low cost material. WO$_3$ films have been prepared by a variety of methods including vacuum evaporation, chemical vapor deposition, electrodeposition process, sol-gel synthesis, sputtering, and laser ablation. Sol-gel process is widely used for oxide film at low temperature in atmosphere and requires lower capital investment to deposit large area coating compared to vacuum deposition process.

  • PDF

Corrosion Resistance by Organic/Inorganic Hybrid Solution for Cold Rolled Steel of SPCC and SPFC590 for Automobile (자동차용 냉연강판 SPCC와 냉연고장력강판 SPCF590의 유/무기 하이브리드 용액에 의한 내식특성)

  • Lee, So-Young;Lee, Kwang-Ho;Jeong, Hee-Rok;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.38-44
    • /
    • 2015
  • The cold-rolled steel sheet for automobile is liable to corrosion, and will be painting in a variety of ways for the anticorrosive. This paper was coated on cold rolled steel (SPCC and SPFC590) for automobiles using five kinds of organic/inorganic hybrid solution. This was evaluated corrosion resistance and so on by the salt spray. Corrosion area was less according to increasing of curing time in 2 types of steel plate with 5 types of the coating solution. No.1 solution was showed the best corrosion resistance regardless of the kinds of the steel sheet. It is judged that the melamin hardner had the role of bridge between $SiO_2$ polysilicate and urethan resin. Other properties were excellent in all solution.

Oxidation Behavior of SiC Coated Carbon/carbon Composite by Pack-cementation Method (Pack-cementation 방법에 의해서 탄화규소로 도포된 탄소/탄소 복합재의 산화거동)

  • 김정일;박인서;주혁종
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.22-29
    • /
    • 2000
  • Although C/C composites have excellent mechanical properties at high temperature, the disadvantage of oxidation in air restricts their applications. Thus a lot of investments have been studied to improve this drawback. In this study, SiC used as a thermal protective coating material possesses almost the same expansion coefficient compared to that of carbon, so SiC was coated on 4D C/C composites by Pack-Cementation process. For SiC-coated C/C composites, optical microscopy observations were performed to estimate the conversion mechanism involved and air oxidation tests were also performed to evaluate the improvement of oxidation resistance. Afterwards the optimum conditions of coating process were estimated from the results of several analysis and tests.

  • PDF