• Title/Summary/Keyword: coating properties

Search Result 2,855, Processing Time 0.03 seconds

Materal properties of Porous BCP Scaffolds depending on the process conditions

  • Park, Lee-Ho;Kim, Min-Seong;Min, Yeong-Gi;Song, Ho-Yeon;Lee, Byeong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.44.2-44.2
    • /
    • 2009
  • BCP powder was synthesized using microwave hydrothermal process with mixed calcium hydroxide and phosphoric acid. After using replica method, porous BCP scaffold was fabricated. PU (Poly Urethane) was used as the fugitive skeleton to fabricate the porous scaffold. BCP powder was mixed in PVB (Polyvinyl butyral) and ethanol solution and then applied to the PU foam by dip coating. After several times of coating and the subsequent oven drying the coated PU foam was burnt out at $750^{\circ}C$ at air to remove the PU. The resulting networked porous composites were sintered at $1250^{\circ}C$, $1300^{\circ}C$ and $1350^{\circ}C$ in microwave furnace for 30 minutes. Material properties of the porous bodies like compressive strength and porosity were investigated. Detailed microstructure of the BCP porous body was characterized by SEM and XRD and TEM techniques. In our experiments, the relationship between mechanical property and viscosity of powder, sintering temperature was investigated.

  • PDF

Super Hydrophilic Properties of ZrO2 Thin Film Containing TiO2 Photo-Catalysis (광촉매 TiO2 함유 ZrO2 박막의 초친수성)

  • Jung, Ki-Uk;Lee, Tea-Gu;Mun, Chong-Soo
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.211-217
    • /
    • 2008
  • A $ZrO_2$ coating solution containing $ZrO_2$ photo-catalysis, which is transparent in visible light, was prepared by the hydrolysis of alkoxide, and thin films on the $SiO_2$ glass substrate were formed in a dipcoating method. These thin films were heat-treated at temperatures ranging from $250^{\circ}C-800^{\circ}C$ and their characteristics were subjected to thermal analysis, XRD, spectrometry, SEM, EDS, contact angle measurement, and AFM. Tetragonal $ZrO_2$ phase was found in the thin film heat treated at $450^{\circ}C$, and anatase $TiO_2$ phase was detected in the thin film heat-treated at $600^{\circ}C$ and above. The thickness of the films was approximately 300 nm, and the roughness was 0.66 nm. Thus, the film properties are excellent. The films are super hydrophilic with a contact angle of $4.0^{\circ}$; moreover, they have self-cleaning effect due to the photo catalytic property of anatase $TiO_2$.

Study on the Properties of $B_2O_3$-$SiO_2$and $Al_2O_3$-$SiO_2$Coating Films by the Sol-Gel Method (Sol-Gel법으로 제조한 $B_2O_3$-$SiO_2$$Al_2O_3$-$SiO_2$ 박막의 특성에 관한 연구)

  • 황규석;김병훈;최석진
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.583-588
    • /
    • 1990
  • Glass films in the binary system B2O3-SiO2 and Al2O3-SiO2 were prepared on soda-lime-silica slide glass by the dip-coating technique from TEOS and boric acid or aluminum nitrate. Thickness of the films varying with viscosity and withdrawal speed were measured and effect of composition and firing temperature on the properties such as transmittance and refractive index were investigated. nM2O3.(100-n)SiO2(M=B or Al) films containing up to 20mol% B2O3 and 40mol% Al2O3 were transparent. Maximum transmittance at visible range were obtained for the sample containing 15mol% Ba2O3 and 32.5mol% Al2O3 and heat-treated at 50$0^{\circ}C$, respectively. Refractive index of the film containing 15mol% B2O3 was mininum in the B2O3-SiO2 binary system and minimal refractive index was appeared at the film containing 32.5mol% Al2O3. In IP spectra, addition of B2O3 were increased absorption peak intensity of B-O and Si-O-B bond and addition of Al2O3 were decreased absorption peak intensity of Si-O bond, respectively.

  • PDF

Effect of nano-sized powder addition on the microstructure and superconducting properties of the YBCO thin film. (나노분말 첨가에 따른 YBCO 초전도 박막의 미셀구조 및 초전도 특성변화 연구)

  • Park, Jin-A;Kim, Byung-Joo;Im, Sun-Won;Ahn, Ji-Hyun;Kim, Ho-Jin;Hong, Gye-Won;Lee, Hee-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1998-2000
    • /
    • 2005
  • The effects of the addition of nanocrystalline Y2O3 powder on the microstructure and superconducting properties have been investigated in YBCO films prepared by TFA-MOD process. Precursor solution doped with extra $Y_2O_3$ Powder was prepared by adding $Y_2O_3$ powder into a stoichiometic precursor solution with a cation ratio of Y:Ba:Cu=1:2:3. Coating solutions with and without $Y_2O_3$ doping were coated on $LaAlO_3(100)$ single crystal by a dip coating method, cacination and conversion heat treatments were performed at the controlled atmosphere containing water vapor Current carry capacity(Jc) of YBCO film was enhanced about 50% by $Y_2O_3$ doping. It is thought that the enhancement of Jc is due to the better connectivity of YBCO grains and/or the flux pinning by the presence of nanocrystalline $Y_2O_3$ Particles embedded in YBCO grains.

  • PDF

Optical and Conduction Properties with the Thickness Variation of the Light-emitting Layer in PVK-Based PLED (PVK계 PLED에서 발광층의 두께 변화에 따른 광학 및 전도 특성)

  • Jang, Kyung-Uk;Ahn, Hee-Cheul;Shin, Eun-Cheul;Lee, Eun-Hye;Yoon, Hee-Myung;Chung, Dong-Hoe;Ahn, Joon-Ho;Lee, Won-Jae;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.373-374
    • /
    • 2007
  • We have fabricated polymer light-emitting diodes(PLED) in a structure of Glass/ITO/PVK/Al. Poly(N-vinylcabazole) (PVK) was deposited on the ITO glass with the spin coating method. PVK thickness is respectively 500nm, 300nm, 250nm and 200nm with the spin coter rotation speed of 2000, 3000, 4000 and 5000rpm. V-I, wavelength-transmittance, P-L and SEM of the fabricated devices were measured. From the result of P-L measurement, it was kept the optic properties of PVK raw powder when PVK thickness is 250nm. The knee-voltage of PVK PLED with 250nm thickness was 7V.

  • PDF

Low Temperature Annealing Effect of PFO-Poss Emission Layer on the Properties of Polymer Light Emitting Diodes

  • Gong, Su-Cheol;Chang, Ho-Jung
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.313-318
    • /
    • 2009
  • Polymer Light Emitting Diodes (PLEDs) with an ITO/PEDOT:PSS/PVK/PFO-poss/LiF/Al structure were prepared on plasma-treated ITO/glass substrates using spin-coating and thermal evaporation methods. The annealing effects of the PFO-poss film when it acts as the emission layer were investigated by using electrical and optical property measurements. The annealing conditions of the PFO-poss emission film were 100 and $200^{\circ}C$ for 1, 2 and 3 hours, respectively. The luminance increased and the turn-on voltage decreased when the annealing temperature and treatment time increased. After examining the Luminance-Voltage (L-V) properties of the PLED, the maximum luminance was found to be 1497 cd/$m^2$ at 11 V for the device when it was annealed at $200^{\circ}C$ for 3 hours. The peak intensity of the PLED emission spectra at approximately 525 nm in wavelength increased when the annealing temperature and time of the PFO-poss film increased. These results suggest that the light emission color shifted from blue to green.

A Study on Unevenness of Paper Surface Properties - Effect of Hot Calendering on Surface Roughening -

  • Chin, Seong-Min;Youn, Hye-Jung;Jung, Hyun-Do;Choi, Ik-Sun
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.485-488
    • /
    • 2006
  • Surface roughening which is occurred by interaction between base paper and water in coating color deteriorates surface properties of coated paper. In this study, the effect of calendering variables on surface roughening and the relationship between hot calendering and water penetration depth were investigated. BCTMP handsheets were calendered at the various conditions of temperature and linear load, and its PPS roughness was measured before and after moistening to evaluate surface roughening. To determine water penetration depth, thickness was measured from the cross sectional images of sheet which were obtained using CLSM technique. High pressure calendering was beneficial to reduce surface roughness before coating but its smoothening effect was mostly lost by contact with water. On the contrary, sheet calendered at the highest temperature showed the lowest roughening. High temperature calendering allowed the smallest penetration of water into fiber network because of sufficient deformation and densification in top side of z-direction of sheet. Consequently, hot calendering could be the effective way to reduce surface roughening and unevenness of paper surface.

  • PDF

Corrosion Resistance and Low Friction Property of Sintered Steel Parts via Chromizing Treatment (크로마이징 처리 된 철계 소결 부품의 내식성 및 저 마찰특성)

  • Kim, Sang-Gweon;Park, Yong-Jin;Yeo, Kuk-Hyun;Lee, Jae-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.809-815
    • /
    • 2012
  • Recently, as the interest in improving energy efficiency has grown, the demand for vehicle and machine parts that are resistant in high temperature corrosive conditions and abrasive environments has increased. Pack chromizing treatment of sintered steels is a profitable method that satisfies both corrosion resistance and low friction properties. Since austenitic stainless steels have good corrosion resistance but low mechanical hardness, if they are replaced by sintered steel parts with pack chromizing treatment, all the desirable properties such as low price, easy molding, high hardness, low frictional coefficient, and high corrosion resistance, can be obtained. The higher corrosion resistance of the chromized parts over that of the austenitic stainless steels was acquired by coating chromium carbides and a thin chromium oxides layer on the surface. Moreover, the surface morphology of chromized parts, which were composed of chromium rich phases and hardened chromium carbides by diffusing and alloying, had a peak-and-valley shape so that the dimple effect by the wrinkled morphology and high hardness induced a low friction coefficient.

Synthesis of Graphene Coated Aluminum Powders by Self-assemble Reaction (자기 조립 반응에 의한 그래핀이 코팅된 알루미늄 입자의 합성 방법)

  • Hwang, Jin Uk;Tak, Woo Seong;Nam, Sang Yong;Kim, Woo Sik
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.383-388
    • /
    • 2019
  • To improve the mechanical properties of aluminum, graphene has been used as a reinforcing material, yielding graphene-reinforced aluminum matrix composites (GRAMCs). Dispersion of graphene materials is an important factor that affects the properties of GRAMCs, which are mainly manufactured by mechanical mixing methods such as ball milling. However, the use of only mechanical mixing process is limited to achieve homogeneous dispersion of graphene. To overcome this problem, in this study, we have prepared composite materials by coating aluminum particles with graphene by a self-assembly reaction using poly vinylalcohol and ethylene diamine as coupling agents. The scanning electron microscopy and Fourier-transform infrared spectroscopy results confirm the coating of graphene on the Al surface. Bulk density of the sintered composites by spark plasma sintering achieved a relative density of over 99% up to 0.5 wt.% graphene oxide content.

Characterization of the Morphology and Corrosion Resistance in Electroless Ni-P-PTFE Composite Coating Prepared by Different pH Value (pH에 따른 무전해Ni-P-PTFE 복합도금의 표면형상 및 내식성에 대한 특성 연구)

  • Byoun, Young-Min;Seo, Sun-Kyo;Yoon, Jin-doo;Ryu, Chanh-Hwan;Na, Sang-Jo;Hwang, Hwan-il
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.3
    • /
    • pp.156-162
    • /
    • 2019
  • Electroless Ni-P coatings are widely used in the chemical, mechanical, and electronic industries because of their excellent wear and abrasion resistance. In this study, The influence of pH values on properties of Ni-P-PTFE composite coatings was investigated. To improve mold lubrication, Ni-P-PTFE composite coatings at different pH value were studied. The morphology and phase structure of Ni-P-PTFE composite coatings were analyzed by scanning electron microscopy(SEM) and X-ray diffractometry(XRD). The result showed that Ni-P-PTFE composite coating is composed of Ni, P and PTFE. It exhibits an amorphous structure and good Corrosion Resistance to the substrate. Ni-P-PTFE composite coatings have higher open circuit potential than that of the substrate, which obtained at pH value of 5.0 optimal integrated properties.