• 제목/요약/키워드: coated powder

검색결과 595건 처리시간 0.023초

CBN분말상에 석출형상 제어를 위한 무전해 기능성 니켈합금도금에 관한 연구 (A Study on the Functional Electroless Ni Plating for Controled Morphology on the CBN Powder)

  • 추현식;김동규
    • 한국표면공학회지
    • /
    • 제41권6호
    • /
    • pp.312-324
    • /
    • 2008
  • In this study, the functional property as a super abrasive material was secured for CBN powder by the electroless Ni-P plating on the surface of the particle. The plating solution has been prepared to control the surface morphology by regulating surfactants and process conditions. The effects of processing parameters on the surface morphology of CBN powder was discussed. The results are summarized as follows; A stable plating tendency was achieved from 1 hour after quantitatively dropping reducing agent. It was observed that more than 50% of the weight gain was obtained by Ni-P coating on the surface of CBN super abrasive powder. The morphology of the Ni-P coating layer is consisted of botryoidal and spiky type and it could be controlled by regulating processing parameters. Superior characteristic in terms of surface morphology was found in the nonionic surfactant XL-80N. It was found that XL-80N considerably decreased surface tension of CBN powder and Ni-P alloy surface then enhance wettability as well as plating rate. Metal coated CBN powder as a raw material of resin bond wheel has been developed through this investigation.

Sintering Behavior of Ag-Ni Electrode Powder with Core-shell Structure

  • Kim, Kyung Ho;Koo, Jun-Mo;Ryu, Sung-Soo;Yoon, Sang Hun;Han, Yoon Soo
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.507-512
    • /
    • 2016
  • Expensive silver powder is used to form electrodes in most IT equipment, and recently, many attempts have been made to lower manufacturing costs by developing powders with Ag-Ni or Ag-Cu core-shell structures. This study examined the sintering behavior of Ag-Ni electrode powder with a core-shell structure for silicon solar cell with high energy efficiency. The electrode powder was found to have a surface similar to pure Ag powder, and cross-sectional analysis revealed that Ag was uniformly coated on Ni powder. Each electrode was formed by sintering in the range of $500^{\circ}C$ to $800^{\circ}C$, and the specimen sintered at $600^{\circ}C$ had the lowest sheet resistance of $5.5m{\Omega}/{\Box}$, which is about two times greater than that of pure Ag. The microstructures of electrodes formed at varying sintering temperatures were examined to determine why sheet resistance showed a minimum value at $600^{\circ}C$. The electrode formed at $600^{\circ}C$ had the best Ag connectivity, and thus provided a better path for the flow of electrons.

슬러리 코팅 공정으로 제조된 Fe 폼의 기공 특성에 미치는 Fe 및 Fe2O3 분말의 혼합 비율의 영향 (The Effect of Fe and Fe2O3 Powder Mixing Ratios on the Pore Properties of Fe Foam Fabricated by a Slurry Coating Process)

  • 최진호;정은미;박다희;양상선;한유동;윤중열
    • 한국분말재료학회지
    • /
    • 제21권4호
    • /
    • pp.266-270
    • /
    • 2014
  • Metal foams have a cellular structure consisting of a solid metal containing a large volume fraction of pores. In particular, open, penetrating pores are necessary for industrial applications such as in high temperature filters and as a support for catalysts. In this study, Fe foam with above 90% porosity and 2 millimeter pore size was successfully fabricated by a slurry coating process and the pore properties were characterized. The Fe and $Fe_2O_3$ powder mixing ratios were controlled to produce Fe foams with different pore size and porosity. First, the slurry was prepared by uniform mixing with powders, distilled water and polyvinyl alcohol(PVA). After slurry coating on the polyurethane(PU) foam, the sample was dried at $80^{\circ}C$. The PVA and PU foams were then removed by heating at $700^{\circ}C$ for 3 hours. The debinded samples were subsequently sintered at $1250^{\circ}C$ with a holding time of 3 hours under hydrogen atmosphere. The three dimensional geometries of the obtained Fe foams with an open cell structure were investigated using X-ray micro CT(computed tomography) as well as the pore morphology, size and phase. The coated amount of slurry on the PU foam were increased with $Fe_2O_3$ mixing powder ratio but the shrinkage and porosity of Fe foams were decreased with $Fe_2O_3$ mixing powder ratio.

건축용 벽 바름재로서 패각분말의 활용성 연구 (Utilizability of Shell Powder as Wall Coatings for Thin Textured Finishes)

  • 전지현;국찬
    • KIEAE Journal
    • /
    • 제7권1호
    • /
    • pp.33-40
    • /
    • 2007
  • 0.4 Million tons of shell powder have been disused as waste in KOREA and caused severe environmental pollution though shell powder can be utilized in real life for many ways. It is impending problem to recycle shell powder as it requires high expense for burying and temporary outside heap and causes severe environmental pollution being a main factor of ocean waste. To suggest the basic data for development of eco-friendly and high-function Wall Coatings Thin Textured Finishes, a wall coating sample was applied to indoor walls of a mock-up and temperature and humidity were measured to assess the thermal performance of it, and a survey of preference for the color sense and feel of the materials with a movie of specimens. The results of the study are following; 1) High insulation performance is shown from the assessment result of the room polystyrene board adhered on the walls then high humidity controlling performance is shown from that of the room polystyrene board coated by shell powder. This point out that shell powder has superiority for humidity controlling. 2) The result of thermal and humidity assessment shows that shell powder makes up for thermal conduction of the polystyrene board and same result can be expected from the assessment with materials which has similar thermal characteristics with polystyrene.3) Ranking of preferred specimens is; 1st Case 13, 2nd Case 17, 3rd Case 16, and 4th Case 12. Preferred shell powder was the ark shell. Preferred powder for plaster was the powder mixed with that sifted by 0.8mm, 100mesh and 40mesh, and for spray was the fine powder mixed with that sifted by 100mesh and 40mesh.

Photocatalytic removal of NOx using TiO2-coated zeolite

  • Mendoza, Joseph Albert;Lee, Dong Hoon;Kang, Joo-Hyon
    • Environmental Engineering Research
    • /
    • 제21권3호
    • /
    • pp.291-296
    • /
    • 2016
  • Application of photocatalytic nanoparticles has been recently gaining an increased attention as air purifying material for sustainable urban development. The present work reports the photocatalytic removal of gaseous phase nitrogen oxides ($NO_x$) using $TiO_2$-coated zeolite to be applied as a filter media for the urban green infrastructure such as raingardens. The $TiO_2$-coated zeolite was synthesized by simple wet chemistry method and tested in a continuous-flow photo-reactor for its removal efficiency of $NO_x$ under different conditions of the weight percentage of $TiO_2$ coated on the zeolite, and gas retention time. The removal efficiency of $NO_x$ in general increased as the weight percentage of $TiO_2$ coated on the zeolite increased up to 15-20%. Greater than 90% of $NO_x$ was removed at a retention time of one minute using the $TiO_2$-coated zeolite ($TiO_2$ weight percentage = 20%). Overall, $TiO_2$-coated zeolite showed greater efficiency of $NO_x$ removal compared to $TiO_2$ powder probably by providing additional reaction sites from the porous structure of zeolite. It was presumed that the degradation of $NO_x$ is attributed to both the physical adsorption and photocatalytic oxidation that could simultaneously occur at the catalyst surface.

$WS_2$ 고체윤활제의 마찰.마모 거동 (Tribological Behaviour of $WS_2$Solid Lubricant)

  • 신동우;김인섭;윤대현;김경도;김성진;정진수
    • Tribology and Lubricants
    • /
    • 제14권2호
    • /
    • pp.35-41
    • /
    • 1998
  • The $WS_2$ solid lubricant synthesized through the vapour phase transport method was coated on the commercial bearing steel (SUJ 2) substrate, and the tribological behaviour of the lubricant was investigated using a ball-on-disk type tester. The $WS_2$ powder was spray-coated at room temperature using compressed air, and the change of friction coefficient was examined in various conditions, i.e., specimen configuration, atmosphere (air and nitrogen), applied load and rotating speed. $WS_2$ coated ball and disk showed the optimum friction coefficient of 0.07 and wear life of 45,000 cycles in the nitrogen atmosphere under 0.3 kgf and 100 rpm, whereas relatively high coefficient of 0.13 and reduced wear life of 4,000 cycles were observed in air atmosphere. The effect of rotating speed on the friction coefficient was not observed both in nitrogen and in air atmospheres. This confirmed that the spray-coated $WS_2$ solid lubricant was effective in reducing the friction coefficient and improving wear life in nitrogen atmosphere, and the oxygen and moisture existing in air could seriously deteriorate the lubrication effect of $WS_2$ coating layer.

Distribution Analysis of TRISO-Coated Particles in Fully Ceramic Microencapsulated Fuel Composites

  • Lee, Hyeon-Geun;Kim, Daejong;Lee, Seung Jae;Park, Ji Yeon;Kim, Weon-Ju
    • 한국세라믹학회지
    • /
    • 제55권4호
    • /
    • pp.400-405
    • /
    • 2018
  • FCM nuclear fuel, a concept proposed as an accident tolerant fuel in light water reactors, consists of TRISO fuel particles embedded in a SiC matrix. The uniform dispersion of internal TRISO fuel particles in the FCM fuel is very important for improving the fuel efficiency. In this study, FCM sintered pellets with various volume ratios of TRISO-coated particles were prepared by hot press sintering. The distribution of TRISO-coated particles was quantitatively analyzed using X-ray ${\mu}CT$ and expressed as a dispersion uniformity index. TRISO-coated particles were most uniformly dispersed in the FCM pellets prepared using only overcoated TRISO particles without mixing of additional SiC matrix powder. FCM pellets with uniformly dispersed TRISO particle volume fraction of up to 50% were prepared using overcoated TRISO particles with varying thickness.