DOI QR코드

DOI QR Code

Photocatalytic removal of NOx using TiO2-coated zeolite

  • Mendoza, Joseph Albert (Department of Civil and Environmental Engineering, Dongguk University-Seoul Campus) ;
  • Lee, Dong Hoon (Department of Civil and Environmental Engineering, Dongguk University-Seoul Campus) ;
  • Kang, Joo-Hyon (Department of Civil and Environmental Engineering, Dongguk University-Seoul Campus)
  • Received : 2016.01.28
  • Accepted : 2016.04.27
  • Published : 2016.09.30

Abstract

Application of photocatalytic nanoparticles has been recently gaining an increased attention as air purifying material for sustainable urban development. The present work reports the photocatalytic removal of gaseous phase nitrogen oxides ($NO_x$) using $TiO_2$-coated zeolite to be applied as a filter media for the urban green infrastructure such as raingardens. The $TiO_2$-coated zeolite was synthesized by simple wet chemistry method and tested in a continuous-flow photo-reactor for its removal efficiency of $NO_x$ under different conditions of the weight percentage of $TiO_2$ coated on the zeolite, and gas retention time. The removal efficiency of $NO_x$ in general increased as the weight percentage of $TiO_2$ coated on the zeolite increased up to 15-20%. Greater than 90% of $NO_x$ was removed at a retention time of one minute using the $TiO_2$-coated zeolite ($TiO_2$ weight percentage = 20%). Overall, $TiO_2$-coated zeolite showed greater efficiency of $NO_x$ removal compared to $TiO_2$ powder probably by providing additional reaction sites from the porous structure of zeolite. It was presumed that the degradation of $NO_x$ is attributed to both the physical adsorption and photocatalytic oxidation that could simultaneously occur at the catalyst surface.

Keywords

References

  1. Lin JT, McElroy MB, Boersma KF. Constraint of anthropogenic $NO_x$ emissions in China from different sectors: A new methodology using multiple satellite retrievals. Atmos. Chem. Phys. 2010;10:63-78. https://doi.org/10.5194/acp-10-63-2010
  2. Roy S, Hegde MS, Madras G. Catalysis for $NO_x$ abatement. Appl. Energ. 2009;86:2283-2297. https://doi.org/10.1016/j.apenergy.2009.03.022
  3. Venkanna R, Nikhil GN, Siva Rao T, Sinha PR, Swamy YV. Environmental monitoring of surface ozone and other trace gases over different time scales: chemistry, transport and modeling. Int. J. Environ. Sci. Technol. 2015;12:1749-1758. https://doi.org/10.1007/s13762-014-0537-8
  4. The World Bank Group, United Nations Environment Programme, and United Nations Industrial Development Organization. Pollution Prevention and Abatement Handbook 1998: Toward Cleaner Production. Washington D.C.:World Bank; 1999. p. 223-226.
  5. Lebowitz MD, Walkinshaw DS. Indoor Air '90: Health effects associated with indoor air contaminants. Arch. Environ. Health. 1992;47:6-7. https://doi.org/10.1080/00039896.1992.9935937
  6. Baek S, Kim Y, Perry R. Indoor air quality in homes, offices and restaurants in Korean urban areas indoor outdoor relationships. Atmos. Environ. 1997;31:529-544. https://doi.org/10.1016/S1352-2310(96)00215-4
  7. Shakerkhatibi M, Dianat I, Asghari Jafarabadi M, Azak R, Kousha A. Air pollution and hospital admissions for cardiorespiratory diseases in Iran: artificial neural network versus conditional logistic regression. Int. J. Environ. Sci. Technol. 2015;12:3433-3442. https://doi.org/10.1007/s13762-015-0884-0
  8. Yu QL, Brouwers HJH. Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study. Appl. Catal. B-Environ. 2009;192:454-461.
  9. Yu K, Lee GWM, Huang W, Wu C, Yang S. The correlation between photocatalytic oxidation performance and chemical/physical properties of indoor volatile organic compounds. Atmos. Environ. 2006;40:375-385. https://doi.org/10.1016/j.atmosenv.2005.09.045
  10. Bhatkhande DS, Pangarkar VG, Beenackers AACM. Photocatalytic degradation for environmental applications-A review. J. Chem. Technol. Biotechnol. 2001;77:102-116.
  11. Subramonian W, Wu TY. Effect of enhancers and inhibitors on photocatalytic sunlight treatment of methylene blue. Water Air Soil Poll. 2014;225:1-15.
  12. Low FCF, Wu TY, Teh CY, Juan JC. Investigation into photocatalytic decolorisation of CI Reactive Black 5 using titanium dioxide nanopowder. Color Technol. 2012;128:44-50. https://doi.org/10.1111/j.1478-4408.2011.00326.x
  13. Maggos T, Bartzis JG, Leva P, Kotzias D. Application of photocatalytic technology for $NO_x$ removal. Appl. Phys. 2007;89:81-84.
  14. Wu Z, Wang H, Liu Yue, Gu Z. Photocatalytic oxidation of nitric oxide with immobilized titanium dioxide films synthesized by hydrothermal method. J. Hazard. Mater. 2008;151:17-25. https://doi.org/10.1016/j.jhazmat.2007.05.050
  15. Teh CY, Wu TY, Juan JC. Facile sonochemical synthesis of N,Cl-codoped $TiO_2$: Synthesis effects, mechanism and photocatalytic performance. Catal. Today 2015;256:365-374. https://doi.org/10.1016/j.cattod.2015.02.014
  16. Dalton JS, Janes PA, Nicholson JA, Hallam KR, Allen GC. Photocatalytic oxidation of $NO_x$ gases using $TiO_2$: a surface spectroscopic approach. Environ. Pollut. 2002;120:415-422. https://doi.org/10.1016/S0269-7491(02)00107-0
  17. Wang H, Wu Z, Zhao W, Guan B. Photocatalytic oxidation of nitrogen oxides using $TiO_2$ loading on woven glass fabric. Chemosphere 2007;66:185-190. https://doi.org/10.1016/j.chemosphere.2006.04.071
  18. Ohama Y, Van Gemert D. Application of titanium dioxide photocatalysis to construction materials. London: Springer; 2011. p. 15-33.
  19. Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 2000;1:1-21. https://doi.org/10.1016/S1389-5567(00)00002-2
  20. Hashimoto K, Irie H, Fujishima A. $TiO_2$ photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 2005;44:8269-8285. https://doi.org/10.1143/JJAP.44.8269
  21. Wang R, Hashimoto K, Fujishima A, et al. Watanabe, light-induced amphiphilic surfaces. Nature 1997;388:431-432. https://doi.org/10.1038/41233
  22. Takeuchi M, Sakamoto K, Martra G, Coluccia S, Anpo M. Mechanism of photoinduced superhydrophilicity on the $TiO_2$ photocatalyst surface. J. Phys. Chem. B 2005;109:15422-15428. https://doi.org/10.1021/jp058075i
  23. Nakata K, Fujishima A. $TiO_2$ photocatalysis: Design and applications. J. Photoch. Photobio. C: Photochem. Rev. 2012;13:169-189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
  24. Lasek J, Yu YH, Wu JCS. Removal of $NO_x$ by photocatalytic processes. J. Photochem. Rev. 2013;14:29-52. https://doi.org/10.1016/j.jphotochemrev.2012.08.002
  25. Asadi S, Hassan MM, Kevern JT, Rupnow TD. Development of pervious concrete pavement for air and storm water improvements. Transp. Res. Rec. 2015;2290:161-167.
  26. Hassan MM, Dylla H, Asadi S, Mohammad LN, Cooper S. Laboratory evaluation of environmental performance of photocatalytic titanium dioxide warm-mix asphalt pavements. J. Mater. Civ. Eng. 2012;24:599-605. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000408
  27. Dylla H, Hassan MM, Mohammad L, Rupnow T. Evaluation of the environmental effectiveness of titanium dioxide photocatalyst coating for concrete pavements. Transp. Res. Rec. 2010;2164:46-51. https://doi.org/10.3141/2164-06
  28. Sager M, Chon HT, Marton L. Spatial variation of contaminant elements of roadside dust samples from Budapest (Hungary) and Seoul (Republic of Korea), including Pt, Pd, and Ir. Environ. Geochem. Health 2015;37:191-193.
  29. Davis AP. Field performance of bioretention: Water quality. Environ. Eng. Sci. 2007;24:1048-1064. https://doi.org/10.1089/ees.2006.0190
  30. Vogel JR, Moore TL, Coffman RR, et al. Critical review of technical questions facing low impact development and green infrastructure:A perspective from the Great Plains. Water Environ. Res. 2015;87:849-862. https://doi.org/10.2175/106143015X14362865226392
  31. Yu YH, Pan YT, Wu J, Lasek J, Wu JCS. Photocatalytic NO reduction with C3H8 using a monolith photoreactor. Catal. Today 2011;174:141-147. https://doi.org/10.1016/j.cattod.2011.01.024
  32. Ballari MM, Hunger M, Husken G, Brouwers HJH. $NO_x$ photocatalytic degradation employing concrete pavement containing titanium dioxide. Appl. Catal. B-Environ. 2010;95:245-254. https://doi.org/10.1016/j.apcatb.2010.01.002
  33. ISO 22197-1: 2007, 'Fine ceramics, advanced technical ceramics)-Test method for air-purification performance of semiconducting photocatalytic materials-part 1: Removal of nitric oxide', ISO, Geneva; 2007.
  34. Teleki A, Wengeler R, Wengeler L, Nirschl H, Pratsinis SE. Distinguishing between aggregates and agglomerates of flame-made $TiO_2$ by high-pressure dispersion. Powder Technol. 2008;181:292-300. https://doi.org/10.1016/j.powtec.2007.05.016
  35. Nguyen NH, Bai H. Photocatalytic removal of NO and $NO_2$ using titania nanotubes synthesized by hydrothermal method. J. Environ. Sci. 2014;26:1180-1187 https://doi.org/10.1016/S1001-0742(13)60544-6
  36. Ma J, Wu H, Liu Y, He H. Photocatalytic removal of $NO_x$ over visible light responsive oxygen-deficient $TiO_2$. J. Phys. Chem. C 2014;118:7434-7441 https://doi.org/10.1021/jp500116n
  37. Bowering N, Croston D, Harrison PG, Walker GS. Silver modified Degussa P25 for the photocatalytic removal of nitric oxide. Int. J. Photoenergy 2007:1-8.
  38. Guo G, Hu Y, Jiang S, Wei C. Photocatalytic oxidation of $NO_x$ over $TiO_2$/HZSM-5 catalysts in the presence of water vapor:Effect of hydrophobicity of zeolites. J. Hazard. Mater. 2012;223-224:39-45. https://doi.org/10.1016/j.jhazmat.2012.04.043
  39. Ichiura H, Kitaoka T, Tanaka H. Preparation of composite $TiO_2$-zeolite sheets using a papermaking technique and their application to environmental improvement. Part II: Effect of zeolite coexisting in the composite sheet on $NO_x$ removal. J. Mater. Sci. 2003;38:1611-1615. https://doi.org/10.1023/A:1023246803552

Cited by

  1. Coating of anatase titania on clinoptilolite by metal organic chemical vapor deposition method: enhanced mesoporosity and photocatalytic activity pp.1336-9075, 2017, https://doi.org/10.1007/s11696-017-0350-1
  2. Electrochemical anodization of graphite oxide-TiO2 nanotube composite for enhanced visible light photocatalytic activity pp.1614-7499, 2017, https://doi.org/10.1007/s11356-017-8571-y
  3. Photocatalytic performance of TiO2 and WO3/TiO2 nanoparticles coated on urban green infrastructure materials in removing nitrogen oxide pp.1735-2630, 2017, https://doi.org/10.1007/s13762-017-1425-9
  4. Surface modified nanostructured-TiO2 thin films for removal of Congo red vol.35, pp.10, 2018, https://doi.org/10.1007/s11814-018-0114-9
  5. Titania Nanoparticles as Modified Photocatalysts: A Review on Design and Development vol.39, pp.2, 2019, https://doi.org/10.1080/02603594.2019.1592751
  6. SiO2-TiO2 Films Supported on Ignimbrite by Spray Coating for the Photocatalytic Degradation of NOx Gas and Methyl Orange Dye vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/4756952
  7. A Study on the Adsorption Characteristics of Tetracycline for the Development of Separation Processes vol.24, pp.6, 2016, https://doi.org/10.9726/kspse.2020.24.6.025