• Title/Summary/Keyword: coated layer

Search Result 1,798, Processing Time 0.031 seconds

Development of Innovative Light Water Reactor Nuclear Fuel Using 3D Printing Technology (3 차원 프린팅 기술을 이용한 신개념 경수로 핵연료 기술 개발에 관한 연구)

  • Kim, Hyo Chan;Kim, Hyun Gil;Yang, Yong Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.279-286
    • /
    • 2016
  • To enhance the safety of nuclear reactors after the Fukushima accident, researchers are developing various types of accident tolerant fuel (ATF) to increase the coping time and reduce the generation of hydrogen by oxidation. Coated cladding, an ATF concept, can be a promising technology in view of its commercialization. We applied 3D printing technology to the fabrication of coated cladding as well as of coated pellets. Direct metal tooling (DMT) in 3D printing technologies can create a coated layer on the tubular cladding surface, which maintains stability during corrosion, creep, and wear in the reactor. A 3D laser coating apparatus was built, and parameter studies were carried out. To coat pellets with erbium using this apparatus, we undertook preliminary experiments involving metal pellets. The adhesion test showed that the coated layer can be maintained at near fracture strength.

The electrical and corrosion properties of polyphenylene sulfide/carbon composite coated stainless steel bipolar plate for PEM fuel cell

  • Lee, Yang-Bok;Kim, Kyung-Min;Park, Yu-Chun;Hwang, Eun-Ji;Lim, Dae-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.89.2-89.2
    • /
    • 2011
  • Stainless steel bipolar plates have many advantage such as high electrical conductivity and mechanical strength and low fabrication cost. However, they need a passivation layer due to low corrosion resistance under PEM fuel cell operation condition. In this study, polyphenyene sulfide(PPS)/carbon composite coated stainless steel bipolar plates were fabricated by compression molding method after PPS/carbon composite sprayed on the stainless steel plate. PPS and carbon were chosen as the binder and conductive filler of passivation layer, respectively. The interfacial contact resistance and corrosion resistance of PPS/carbon composite coated stainless steel bipolar plates were investigated and compared to the stainless steel. The PPS/carbon composite coated stainless steel compared to stainless steel was improved interfacial contact resistance. The results of the potentiodynamic and potentiostatic measurements also showed that the PPS/carbon composite coated stainless steel did not corroded under PEM fuel cell operating conditions.

  • PDF

Contact Analysis Between Rubber Seal, a Spherical Particle and Coated Steel Surface (시일과 코팅된 스틸면 사이의 구형 입자에 의한 접촉해석)

  • Park, Tae-Jo;Jo, Hyeon-Dong
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.225-230
    • /
    • 2009
  • Seals are very useful machine components in protection of leakage of lubricant or working fluid, and incoming of debris from outside. Various elastomer are widely used as sealing materials and the shaft surfaces are generally coated with high hardness material after heat treatment. It is generally known that the foreign debris and wear particles get stuck into sealing surface, the steel shaft surface can be damaged and worn by mainly abrasive wear. In this paper, using MARC, contact analysis are conducted to show the hard coated steel shaft surface can be fatigue failed by very small elastic particle intervened between seal and steel surface. Variations of contact and von-Mises stress distributions and contact half-widths with interference and coating thickness are presented. The maximum von-Mises stress occurs always in the coating layer or between coated layer/substrate interface. Therefore the coated sealing surface can be fatigued and then failed by very small particles. The results can be used in design of sealing surface and further studies are required.

Studies on the Foldability of Coated Board(II) - Influence of operating conditions in creasing and folding process on the foldability of duplex board - (백판지의 제함적성에 관한 연구(제2보) - 괘선/구부림 가공 작업조건이 제함적성에 미치는 영향 -)

  • Lee, Yong-Kyu;Lim, Won-Seok;Kim, Chang-Keun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.4
    • /
    • pp.66-73
    • /
    • 2008
  • When coated paperboard is printed, pressed into a groove with a creasing rule and folded, white line cracking occurs along the crease due to intensive mechanical pressure. The cracking will deteriorates product quality and waste resources. Effects of creasing pressure and ink dosage on the foldability of coated board were investigated. It was shown that applying an optimum pressure is important during creasing. When the pressure was too low, the crease formed was not sufficiently deep enough to enable precise folding. When an excess pressure was applied, fiber bonding was destroyed, resulted in unsatisfactory cracking. When the coated board was folded in machine direction (MD), long cracks were formed along MD. When it folded in cross direction (CD), the cracks were shorter and formed perpendicular to CD. Printing promoted cracking due to the decrease in flexibility of coated board. In addition, uneven ink film layer on the coating layer caused worse cracking.

Fabrication of SmBCO coated conductors using $CeO_2$ single buffer layers ($CeO_2$ 단일 완충층을 이용한 SmBCO 초전도테이프 제조)

  • Kim Tae-Hyung;Kim Ho-Sup;Ha Hong-Soo;Oh Sang-Soo;Yang Ju-Sang;Ha Dong-Woo;Song Kyu-Jeong;Lee Nam-Jin;Jung Ye-Hyun;Park Kyung-Chae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.32-36
    • /
    • 2006
  • Simplification of the buffer architecture in the fabrication of coated conductors is required because the deposition of multi-layers leads to a longer production time and a higher cost of coated conductors. In this study, a single layered buffer deposition of $CeO_2$ for low cost coated conductors has been tried using thermal evaporation technique. l00nm-thick $CeO_2$ layers deposited by thermal evaporation were found to act as a diffusion layer. $0.4{\mu}m$-thick SmBCO superconducting layers were deposited by thermal co-evaporation on the $CeO_2$ buffered Ni-W substrate. Critical current of $55.4 A/cm^2$ was obtained for the SmBCO coated conductors.

Deposition of Functional Organic and Inorganic Layer on the Cathode for the Improved Electrochemical Performance of Li-S Battery

  • Sohn, Hiesang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.483-489
    • /
    • 2017
  • The loss of the sulfur cathode material through dissolution of the polysulfide into electrolyte causes a significant capacity reduction of the lithium-sulfur cell during the charge-discharge reaction, thereby debilitating the electrochemical performance of the cell. We addressed this problem by using a chemical and physical approach called reduction of polysulfide dissolution through direct coating functional inorganic (graphene oxide) or organic layer (polyethylene oxide) on electrode, since the deposition of external functional layer can chemically interact with polysulfide and physically prevent the leakage of lithium polysulfide out of the electrode. Through this approach, we obtained a composite electrode for a lithium-sulfur battery (sulfur: 60%) coated with uniform and thin external functional layers where the thin external layer was coated on the electrode by solution coating and drying by a subsequent heat treatment at low temperature (${\sim}80^{\circ}C$). The external functional layer, such as inorganic or organic layer, not only alleviates the dissolution of the polysulfide electrolyte during the charging/discharging through physical layer formation, but also makes a chemical interaction between the polysulfide and the functional layer. As-formed lithium-sulfur battery exhibits stable cycling electrochemical performance during charging and discharging at a reversible capacity of 700~1187 mAh/g at 0.1 C (1 C = 1675 mA/g) for 30 cycles or more.

금속이 코팅된 PET필름의 수분침투 특성 평가

  • Choe, Yeong-Jun;Park, Gi-Jeong;Jo, Yeong-Rae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.36.1-36.1
    • /
    • 2009
  • OLED(organic light emitting diode)는 차세대 평판 디스플레이로 전자종이, 입는 디스플레이 등 flexible한 디스플레이로도 주목받고 있다. 하지만, OLED의 가장 큰 단점 중의 하나가 수분과 산소에 매우 민감하다는 것으로 이것은 OLED의 lifetime과 연결된다. 따라서 이에 대한 mechanism의 확립이 필요하다. 따라서 본 연구에서는, flexible한 OLED에 적용되는 금속 코팅막의 적층구조 및 기판의 노출온도에 따른 금속 코팅막의 수분침투 특성에 대해 MOCON의 weight gain test (WGT)를 통해 barrier layer에 대해 평가하고 이에 대한 mechanism을 확립하는데 그 목적이 있다. 금속 코팅막은 OLED의 cathode와 anode 재료로 많이 사용되는 Al과 ITO를 sputter장비를 이용해 single layer와 multi-layer의 두 가지 구조로 PET기판에 증착하였다. 또한, 노출온도에 따른 특성을 알아보고자 bare PET / ITO coated PET(single layer $50{\mu}m$) / Al coated PET(single layer $200{\mu}m$)의 세 가지 시편을 제작하였다. 이 시편을 각각 $25^{\circ}C$, $37.8^{\circ}C$, $50^{\circ}C$의 온도에서 test를 진행하였고 이 과정을 100%RH, 70%RH, 40%RH조건의 수분조건에서 진행하여 각각의 수분조건에서 각각의 온도에 따른 금속 코팅막의 수분침투 특성에 대한 mechanism을 확립하였다. 적층구조에 따른 수분침투 특성 평가 결과 multi-layer가 single layer보다 더 우수한 수분침투의 barrier 특성을 나타냈었다. 그리고 각 온도에 따른 test결과 온도가 증가할수록 barrier의 특성이 나빠짐이 보였다.

  • PDF

Cracking Behavior Under Contact Stress in Densely Coated Porous Engineering Ceramics (치밀층으로 코팅된 다공성 엔지니어링 세라믹스에서의 접촉응력에 의한 균열 거동)

  • Kim, Sang-Kyum;Kim, Tae-Woo;Kim, Do-Kyung;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.554-560
    • /
    • 2005
  • The engineering ceramic needs the properties of high strength, hardness, corrosion-resistance and heat-resistance in order to withstand thermal shock or applied nonuniform stresses without failure. The densely coated porous ceramics can be used for machine component, electromagnetic component, bio-system component and energy-system component by their high-performances from superior coating properties and light-weight characteristics due to the structure including pore by itself. In this study we controlled the porosity of silica and alumina, $8.2\~25.4\%$ and $23.4\~36.0\%$, respectively, by the control of sintering temperature and starting powder size. We made bilayer structures, consisting of a transparent glass coating layer bonded to a thick substrate of different porous ceramics by a thin layer of epoxy adhesive, facilitated observations of crack initiation and propagation. The elastic modulus mismatch could be controlled using different porous ceramics as the substrate layer. Then we applied 150 N force using WC sphere with a radius of 3.18 mm by Hertzian indentation. As a result, the crack initiation in the coating layer was delayed at lower porosity in the substrate layer, and the damage in the coating layer was relatively smaller at the bilayer structure coated on higher elastic substrate.

Effect of the thickness of CeO$_2$ buffer layer on the YBCO coated conductor

  • Dongqi Shi;Ping Ma;Ko, Rock-Kil;Kim, Ho-Sup;Ha, Hong-Soo;Chung, Jun-Ki;Kyu-Jeong, Song;Park, Chan;Moon, Seung-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.1-4
    • /
    • 2004
  • Three group samples with difference thickness of $CeO_2$ capping layer deposited by PLD were studied. Among them, one group $CeO_2$ films were deposited on stainless steel tape coated with IBAD- YSZ and $CeO_2$ buffer layer ($CeO_2$/IBAD-YSZ/SS); other two groups of $CeO_2 YSZ Y_2O_3$multi-layer were deposited on NiW substrates for fabrication of YBCO coated conductor through RABiTS approach. The pulsed laser deposition (PLD) and DC magnetron sputtering were employed to deposit these buffer layers. On the top of buffer layer, YBCO film was deposited by PLD. The effect of thickness of $CeO_2$ film on the texture of $CeO_2$ film and critical current density ($J_c$) of YBCO film were analyzed. For the case $CeO_2$ on $CeO_2$/IBAD-YSZ/SS, there was a self-epitaxy effect with the increase of $CeO_2$ film. For $YSZ/Y_2O_3$ NiW which was deposited by PLD or DC magnetron sputtering, there is not self-epitaxy effect. However, the capping layer of $CeO_2$ film deposited by PLD improved the quality of buffer layer for $YSZ/Y_2O_3$ which was deposited by DC magnetron sputtering, therefore increased the $J_c$ of YBCO film.

Characteristics of Tin Oxide Thin Film Grown by Atomic Layer Deposition and Spin Coating Process as Electron Transport Layer for Perovskite Solar Cells (원자층 증착법과 용액 공정법으로 성장한 전자 수송층 산화주석 박막의 페로브스카이트 태양전지 특성)

  • Ki Hyun Kim;Sung Jin Chung;Tae Youl Yang;Jong Chul Lim;Hyo Sik Chang
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.475-481
    • /
    • 2023
  • Recently, the electron transport layer (ETL) has become one of the key components for high-performance perovskite solar cell (PSC). This study is motivated by the nonreproducible performance of ETL made of spin coated SnO2 applied to a PSC. We made a comparative study between tin oxide deposited by atomic layer deposition (ALD) or spin coating to be used as an ETL in N-I-P PSC. 15 nm-thick Tin oxide thin films were deposited by ALD using tetrakisdimethylanmiotin (TDMASn) and using reactant ozone at 120 ℃. PSC using ALD SnO2 as ETL showed a maximum efficiency of 18.97 %, and PSC using spin coated SnO2 showed a maximum efficiency of 18.46 %. This is because the short circuit current (Jsc) of PSC using the ALD SnO2 layer was 0.75 mA/cm2 higher than that of the spin coated SnO2. This result can be attributed to the fact that the electron transfer distance from the perovskite is constant due to the thickness uniformity of ALD SnO2. Therefore ALD SnO2 is a candidate as a ETL for use in PSC vacuum deposition.