• 제목/요약/키워드: coated element

검색결과 174건 처리시간 0.028초

알루미늄 확산코팅재료의 주기산화 특성에 관한 연구 (A Study on the Cyclic Oxidation Properties of Aluminum Diffusion Coated Materials)

  • 강석철;민경만;김길무
    • 한국표면공학회지
    • /
    • 제32권1호
    • /
    • pp.49-60
    • /
    • 1999
  • The protective oxide scales and coatings formed on high temperature materials must be preserved in high temperature atmosphere. And the thermal stresses induced by thermal cycling and the growth stresses by the formation of oxide scales can cause the loss of adherence and spalling of the oxide scales and coated layers. Among the coating processes Al diffusion coating is favored due to thermochemical stability and superior adherence in an hostile atmosphere. In this study, protective oxide forming element, Al was coated on Ni, Inconel 600 and 690 by diffusion coating process varying coating temperature and time. And the surface stability and adherence of oxide scales formed on those Al diffusion coated materials were evaluated by thermal cycling test. Al diffusion coated specimens showed superior cyclic oxidation resistance compared to bare ones and specimens coated for longer period had better cyclic oxidation resistance, due to the abundant amount of Al in the coated layer. Meanwhile Al diffusion coated Inconel 600 and 690 showed improved cyclic oxidation resistance by the effect of Al in the coated layer and Cr in the substrate. Comparing both Al diffusion coated Inconel 600 and 690, Al diffusion coated Inconel 690 maintained better adhesion between coated layer and substrate by virtue of the bridging effect resulting from the segregation of Cr in the interdiffusion zone.

  • PDF

직렬 연결된 두 코일과 YBCO Coated Conductor로 구성된 초전도 전류제한기의 권선방향과 권선 비에 따른 전류제한 특성 분석 (Analysis on Current Limiting Characteristics of the SFCL with Magnetically Coupled Two Coils and YBCO Coated Conductor Due to the Winding Direction and the Turn Number' Ratio Between Two Coils)

  • 이동혁;두호익;김용진;한병성;한상철;이정필
    • 한국전기전자재료학회논문지
    • /
    • 제24권1호
    • /
    • pp.52-56
    • /
    • 2011
  • The ongoing Superconducting Fault Current Limiter(SFCL) development mainly has focused on the application of commercializaton and power system through combining with normal-conducting device, moving away from current-limiting method, which is solely dependant on the existing superconductor. Compared to the structural development above, on the other hand, the research on applying superconducting current-limiting element to SFCL, the heart of SFCL, still has a lot left to do, apart form traditional resistive type SFCL. In this study, we looked into the current limiting characteristic of SFCL using core and coil. YBCO coated conductor with stainless steel stabilizer layer was verified by the excellent of current-limiting element of the resistive type SFCL that has a high Jc and index as well as being superior in mechanical property. Also, we study temperature characteristics and resistance characteristics, max voltage, response time and current-limiting ability that can be an indicator as current-limiting element while applying to superconducting current-limiting element caused by variation of winding direction, winding ratio of SFCL using core and coil.

표면처리강판 코팅층의 기계적 특성결정에 관한 연구 (Determination of the mechanical properties of coated layer in the sheet metal)

  • 고영호;이정민;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.343-346
    • /
    • 2004
  • In recent years, various forms of indentation testing have been increasingly used to determine the material properties of specimens. This technique, particularly the nano-indentation method , has been extended to the testing of coating systems in order to calculate the individual properties of the thin coatings and the substrates. However, the interpretation of the test data to achieve this is complex and continues to be a widely studied subject. Based on the finite element method of coated surfaces indented by a Berkovich diamond tip, this paper describes methods for combining FEM and experimental indentation testing to determine coating modulus and hardness independent of substrate effects. Using this proposed methodology, testing and FEM to measure coefficients of friction of sheet steel for outer panel were studied.

  • PDF

도금강판과 무도금강판의 마찰특성을 고려한 성형성 평가 (Formability evaluation of coated steel sheet and uncoated steel sheet with consideration of friction characteristic)

  • 이경수;이정민;김상주;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.440-443
    • /
    • 2005
  • Recently the usage of galvanealed steel sheet was increased in order to protect corrosion in automobile industry. So, the alternative of steel sheet was investigated in a point of formability. Generally it was known that uncoated steel sheet has better mechanical properties than coated steel sheet. But, contrary results were sometimes occurred in workplace. This reason is the effect of friction. In this study, the formability of steel sheet considering friction characteristics was investigated with tensile test, cup drawing test and finite element method.

  • PDF

유한요소해석에 의한 DLC 코팅면의 마멸기구에 대한 연구 (A Study on Wear Mechanism in Diamond-like Carbon Coated Surface by Finite Element Analysis)

  • 이준혁;박태조
    • Tribology and Lubricants
    • /
    • 제29권6호
    • /
    • pp.366-371
    • /
    • 2013
  • Various heat treatment and surface coating methods have been applied to machine parts. Nowadays, diamond-like carbon (DLC) coatings are widely used because of their excellent tribological characteristics. Despite the numerous studies on DLC-coated engineering surfaces, the exact wear mechanisms related to the coating thickness and elastic modulus have not been fully examined. In this study, a sliding contact problem between a small spherical hard particle and a DLC-coated steel surface is analyzed using a nonlinear finite element code, MARC. The maximum principal stress distributions and deformed surfaces are compared for different coating thicknesses and Young's modulus values. Plastically deformed surface shapes such as a groove and torus indicate that the most dominant wear mechanism for a DLC-coated surface is abrasive wear. Fatigue wear can also play a role in a case where the coating thickness is relatively large and the elastic modulus is high.

유한요소해석에 의한 코팅면의 브리넬 경도 평가: 제2보 - 모재와 코팅두께의 영향 (Evaluation of Brinell Hardness of Coated Surface by Finite Element Analysis: Part 2 - Influence of Substrate and Coating Thickness)

  • 박태조;강정국
    • Tribology and Lubricants
    • /
    • 제37권4호
    • /
    • pp.144-150
    • /
    • 2021
  • The most cost-effective method of reducing abrasive wear in mechanical parts is increasing their hardness with thin hard coatings. In practice, the composite hardness of the coated substrate is more important than that of the substrate or coating. After full unloading of the load applied to an indenter, its indentation hardness evaluated based on the dent created on the test piece was almost dependent on plastic deformation of the substrate. Following the first part of this study, which proposes a new Brinell hardness test method for a coated surface, the remainder of the study is focused on practical application of the method. Indentation analyses of a rigid sphere and elastic-perfect plastic materials were performed using finite element analysis software. The maximum principal stress and plastic strain distributions as well as the dent shapes according to the substrate yield stress and coating thickness were compared. The substrate yield stress had a significant effect on the dent size, which in turn determines the Brinell hardness. In particular, plastic deformation of the substrate produced dents regardless of the state of the coating layer. The hardness increase by coating behaved differently depending on the substrate yield stress, coating thickness, and indentation load. These results are expected to be useful when evaluating the composite hardness values of various coated friction surfaces.

플라즈마 용사층에 발생하는 응력해석 (Analysis of thermal stresses developed in plasma sprayed layer)

  • 배강열;김희진
    • Journal of Welding and Joining
    • /
    • 제8권4호
    • /
    • pp.58-68
    • /
    • 1990
  • The formation of thermal stresses by plasma spraying is generally considered as adverse. Therefore, the knowledge of stress distribution in the deposited layer during and after plasma spraying will be of special interest. In this study finite difference heat transfer analysis and finite element stress analysis were carried out to predict the change of stress distribution in the plasma coated layer with the variations of preheat temperature, number of scan, particle size, and bond coat. The results of the numerical analysis were as follows: 1) Transient stresses developed in the coated layer were up to the level of yiedl strength at the temperature. 2) The tensile stresses were developed in the deposited layer and the surface of the substrate, but the compressive stresses were developed in the rest of the substrate. 3) Transient and residual stresses were significantly affected by the preheat temperature. 4) The variations of temperature of powder particle and number of torch scan changed tensile stress distribution, but made no difference on the magnitude of the stresses. 5) Bond coated layer reduced the stree level of deposited layer.

  • PDF

Sol-Gel법으로 HA코팅된 치과용 임플란트 합금의 표면특성 (Surface Characteristics of HA Coated Dental Implant Alloy by Sol-Gel Method)

  • 최한철;고영무
    • 한국표면공학회지
    • /
    • 제38권4호
    • /
    • pp.167-173
    • /
    • 2005
  • Surface characteristics of HA(hydroxyapatite) coated dental implant alloy by Sol-Gel method were investigated using potentiostat, ICP, SEM, EDX, EPMA and surface roughness tester. Surface roughness of HA coated specimen by Sol-Gel showed higher than that of PVD coated specimen. Corrosion resistance increased in the order of $1\%$ lactic acid, artificial saliva, $0.5\%$ HCI and $0.9\%$ NaCl solution. Amount of Ca element release was higher than that of V and P in the $0.5\%$ HCI and $0.9\%$ NaCl solution.

유한요소 해석을 이용한 동피복 복합선재의 인발 공정 해석 (Analysis of Copper clad steel wire in the drawing process using FE method)

  • 김현수;조훈;조형호;김대근;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.27-30
    • /
    • 2004
  • Clad wire , which has the advantages of the high strength of a steel core and the electro-conductivity, corrosion resistance of a copper layer, is widely being used the telecommunications, electric-electronic and military technology industries, among others. It is important to obtain uniform coated rate when producing clad wires. Clad wire drawing process can be influenced on damage and coated rate of core and sleeve by process variables as semi-die angle and reduction in area. Therefore, in this study, the finite-element results established in previous study is used to analyze the effect of the various forming parameters, which included the semi-die angle, reduction in area etc. The coated rate will be predicted with observation copper coated rate variation according to total reduction in area and the optimal pass schedule will be set up through proper reduction in area and semi-die angle variation.

  • PDF

Fabrication of Transparent Heat-element using Single- Walled Carbon Nanotubes

  • 정혁;;이한민;김동현;김도진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.31.2-31.2
    • /
    • 2009
  • In this research, single walled carbon nano-tube film was manufactured with spray coating method on glass for application as transparent heat element. SWNTs solution to be used for spraying is obtained by dispersion of 0.01 wt% purified SWNTs in dimethylformamide (DMF) solution through ultrasonification and centrifugation. The transmittance and sheet resistance of SWNTs film were determined by the number of spray injection. Manufactured SWNTs film will have sheet resistance range of $200\;\Omega/\square-900\;\Omega/\square$ at transmittance range of 70-90 %. Heat generation characteristic of SWNTs film was measured by applying constant DC voltage of 15V. The result confirmed that SWNTs film with sheet resistance of $200\;\Omega/\square$ reaches surface temperature of $80^{\circ}C$ within several seconds. In addition, PET coating film was coated on top of the SWNTs film by using laminator in order to solve weak adhesive property of the spray coated SWNTs film on the substrate as well as to maintain its electrical and optical properties.

  • PDF