• Title/Summary/Keyword: coat protein.

Search Result 371, Processing Time 0.801 seconds

Impact of Virus-resistant Trigonal Cactus Cultivation on Soil Microbial Community (바이러스저항성 삼각주 재배가 토양 미생물상에 미치는 영향)

  • Oh, Sung-Dug;Kim, Jong-Bum;Lee, Jung-Jin;Kim, Min-Kyeong;Ahn, Byung-Ohg;Sohn, Soo-In;Park, Jong-Sug;Ryu, Tae-Hun;Cho, Hyun-Suk;Lee, Kijong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.148-154
    • /
    • 2013
  • BACKGROUND: Genetically modified(GM) trigonal cactus(Hylocereus trigonus Saff.) contained a coat protein gene of cactus virus X (CVX), which conferred resistance to the virus, phosphinothricin acetyltransferase (bar) gene, which conferred herbicide resistance, and a cauliflower mosaic virus 35S promoter (CaMV 35S). This study was conducted to evaluate the possible impact of GM trigonal cactus cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere of GM and non-GM trigonal cactus cultivation soils. The total numbers of bacteria, and actinomycete in the rhizosphere soils cultivated GM and non-GM trigonal cactus were similar to each other, and there was no significant difference. Dominant bacterial phyla in the rhizosphere soils cultivated with GM and non-GM trigonal cactus were Proteobacteria, Uncultured archaeon, and Uncultured bacterium. The denaturing gradient gel electrophoresis (DGGE) profiles show a similar patterns, significant difference was not observed in each other. DNA was isolated from soil cultivated GM and non-GM trigonal cactus, we analyzed the persistence of the inserted gene by PCR. Amplification of the inserted genes was not observed in the soil DNA, which was collected after harvest. CONCLUSION(S): This result suggests that the GM trigonal cactus cultivation does not change significantly the microbial community.

Identification of Daphne Mottle Virus Isolated from Daphne odora, a New Member of the Genus Potyvirus (서향에서 분리한 신종 포티바이러스(Daphne Mottle Virus)의 동정)

  • Park, Chung Youl;Park, Jungan;Lee, Boo-Ja;Bak, Sangmin;Lee, Hong-Kyu;Kim, Jeong-Sun;Yoon, Youngnam;Suh, Sang Jae;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.22 no.1
    • /
    • pp.59-63
    • /
    • 2016
  • A new poty-like virus was isolated from plants of winter daphne (Daphne odora) that showed virus-like symptoms on leaves, from four regions of Korea during 2014. Filamentous-shaped particles were observed by transmission electron microscopy of preparations extracted from symptomatic leaves and examined by the direct negative stain method. RT-PCR assay showed that three samples were positive for both Cucumber mosaic virus and potyvirus, and only one sample was positive for potyvirus only. A BLAST comparison to partial sequences from helper-component proteinase, cylindrical inclusion and coat protein genes detected the highest nucleotide identity of 76%, 72%, and 72% with Daphne mosaic virus, respectively, levels below the potyvirus species discrimination threshold. The new potyvirus was isolated using indicator plants (Chenopodium amaranticolor), in which local lesions were produced. In this study, we identified a novel potyvirus from winter daphne, which we have named Daphne mottle virus (DapMoV).

Characterization of an Isolate of Cucumber mosaic virus from Raphanus sativus L. (열무에서 분리한 오이모자이크바이러스 분리주의 특성)

  • Rhee, Sun-Ju;Hong, Jin-Sung;Choi, Jang-Kyung;Kim, Eun-Ji;Lee, Gung-Pyo
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.211-215
    • /
    • 2011
  • Cucumber mosaic virus (CMV)-like isolate was collected from Raphanus sativus (cv. Choon-hyang), which showed mosaic symptoms. The isolate was confirmed to a strain of CMV by host responses in Vigna unguiculata, Chenopodium amaranticolor and Gomphrena globosa, by viral genome composition with RT-PCR and PCR-RFLP, and by serological analysis. Symptom developed by the strain of CMV was severe in Nicotiana benthamiana, N. glutinosa, N. tabacum (cv. Samsun, cv. Xanthi), Cucumis melo (cv. Early hanover), Cucumis sativus (cv. White wonder), Capsicum annuum (cv. Chung-yang and cv. Geum-top), but mild symptom was developed in Raphanus sativus (cv. Choon-hyang), Brassica rapa ssp. pekinensis (cv. Bul-Am No. 3), and B. juncea (cv. Daenong Jukgot). Newly isolated strain of CMV could infect diverse crops including Solanaceae, Cucurbitaceae and Brassicaceae. We designated the new strain of CMV as Gn-CMV based on the novel infectivity of Brassicaceae. In double-stranded (ds) RNA analysis, Gn-CMV consisted of 3.3, 3.0, and 2.2 kb genomes likewise other strains of CMV. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) showed 28 kDa of the CMV coat protein. By restriction enzyme mapping using Cac8I, ClaI and MspI of RT-PCR products indicated that Gn-CMV belongs to CMV subgroup I.

Diagnosis and Sequence Analysis of Japanese yam mosaic virus from Yam (Dioscorea opposita) (마(Dioscorea opposita)에 발생한 Japanese yam mosaic virus 진단 및 염기서열 분석)

  • Lee, Joong-Hwan;Son, Chang-Gi;Kwon, Joong-Bae;Nam, Hyo-Hun;Kim, Yeong-Tae;Kim, Mi Kyeong;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.22 no.4
    • /
    • pp.289-292
    • /
    • 2016
  • We surveyed the occurrence of Japanese yam mosaic virus (JYMV) on Yam in Gyeongsangbukdo pronvince from 2013 to 2015. The symptoms of JYMV were yellow stripes and chlorosis in yam leaves and the infection rate was ranged from 33.6% to 40.8%. We determined nucleotide sequence encoding the polyprotein of JYMV isolate BRI from yam leaves using next-generation sequencing (NGS) method. The partial nucleotide portion (7,736 nucleotides) of the genomic RNA of the JYMV isolate BRI has been sequenced (accession No. KU309315). The region sequenced includes a single open reading frame (ORF) encoding a polyprotein composed of 2,497 amino acids containing the coat protein (CP) and 3' untranslated region (UTR). The genomic organization of this isolate shows almost the same to that of other members of JYMV. The JYMV isolate BRI showed 77% to 79% nucleotide identity with the Japanese and Chinese strains and isolates. This is the first report of the genome nucleotide sequence of JYMV from Dioscorea opposita in Korea.

Superficial Tuber Necrosis in Potato Cultivar 'Haryeong' Caused by Potato virus Y (Potato virus Y에 의한 하령 감자의 괴경 괴저증상)

  • Lee, Young-Gyu;Kim, Jeom-Soon;Kim, Ju-Il;Park, Young-Eun
    • Research in Plant Disease
    • /
    • v.19 no.2
    • /
    • pp.90-94
    • /
    • 2013
  • Potato cv. 'Haryeong' was bred with high solids, resistance to late blight and good culinary quality. It has been registered as new potato variety in 2005. Tuber necrosis symptoms such as severe superficial necrosis, raised surface lesions and ringed necrotic areas were found in tubers of 'Haryeong' during storage of seed potatoes in 2010. Potato virus Y (PVY) was detected from these symptomatic tubers by the analysis of RT-PCR using a primer set specific to coat protein gene of PVY. The nucleotide sequence of RT-PCR product ($PVY^{Hkr}$) was determined and compared to those of other strains, such as $PVY^{Kor}$, $PVY^N$, $PVY^{NTN}$, $PVY^O$, and $PVY^C$ registered in GeneBank. The result showed that $PVY^{Hkr}$ was exactly the same as $PVY^{Kor}$, Korean isolate reported in 2005, except two nucleotides. To verify the PVY was responsible for the tuber necrosis symptoms shown in the tubers of 'Haryeong', a bioassay was done using two viruses (PVY and Potato leafroll virus) and five potato cultivars ('Haryeong', 'Superior', 'Atlantic', 'Dejima', and 'Chubaek'). As expected, the same necrosis symptom appeared in tubers of 'Haryeong' infected with PVY only during the storage period.

Inhibitory Effect of Cheese Whey on Cucumber Mosaic Virus and Pepper Mottle Virus in Capsicum annuum (치즈 유청의 오이모자이크바이러스와 고추모틀바이러스 감염 억제 효과)

  • Chung, Bong Nam;Kwon, Sun Jung;Choi, Gug Seoun;Yoon, Ju Yeon;Cho, In Sook
    • Research in Plant Disease
    • /
    • v.26 no.2
    • /
    • pp.103-108
    • /
    • 2020
  • Evaluations were made for the effects of cheese whey treatment on infection of pepper plants by cucumber mosaic virus-Vch (CMV-Vch) and pepper mottle virus-Kr (PepMoV-Kr). In a greenhouse, pepper plants sprayed with whey, prior to inoculation by CMV-Vch using aphids, showed a viral infection rate significantly lower (6.6%) than for the control (23.3%). In an open field experiment, in which CMV infection relied on natural transmission by aphids, pepper plants were sprayed with undiluted whey once a week, starting on the transplanting date (May 2) to the end of June. On June 5, these whey-sprayed plants showed a CMV infection rate reduced by 18.9% and 16.7%, compared to untreated and pesticide-treated plants, respectively. In the greenhouse, pepper plants inoculated with PepMoV-Kr mixed with whey showed a viral infection rate decreased by 60% compared to the control. The accumulated amount of PepMoV-Kr coat protein was less than that for the virus-only control at 6 days post inoculation (dpi), but increased up to a similar level as the control at 9 dpi. This study showed that cheese whey is effective in reducing infection of both CMV and PepMoV in pepper plants.

Production of Chimeric Mice Following Transgenesis of Multipotent Spermatogonial Stem Cells (유전자변형 다분화능 정원줄기세포를 이용한 키메라 생쥐의 생산)

  • Lim, Jung-Eun;Eum, Jin-Hee;Kim, Hyung-Joon;Park, Jae-Kyun;Lee, Hyun-Jung;Lee, Dong-Ryul
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.305-312
    • /
    • 2009
  • Multipotent spermatogonial stem cells (mSSCs), derived from uni-potent SSC, are a type of reprogrammed cells with similar characteristics to embryonic stem cells (ESCs). The aim of this study was to evaluate the potential for transgenesis of mSSC derived from outbred mice and the production of transgenic animal by the mSSC-insertion into embryo. mSSCs, established from outbred mice (ICR strain) in the previous study, were maintained and then transfected with a lenti-viral vector expressing green fluorescent protein (GFP), CS-CDF-CG-PRE. Embryonic stem cells (ESCs) were derived from inbred transgenic mice (C57BL/6-Tg (CAG-EGFP)) and were used as an experimental control. Transfected mSSCs were well proliferated in vitro and maintained their characteristics and normal karyotype. Ten to twelve mSSCs and ESCs were collected and inserted into perivitelline space of 8-cell mouse embryos, and then transferred them into uteri of poster mothers after an additional 2-days of culture. Percentage of mSSC-derived offsprings was 4.8% (47/980) and which was lower than those (11.7% (67/572)) of ESC-derived ones (P<0.05). However, even though different genetic background of mSSC and ESC origin, the production efficiency of coat-colored chimeric offspring in mSSC group was not different when compared it with ESC (6.4% (3/47) vs. 7.5% (5/67)). From these results, we confirmed that mSSC derived from outbred mice has a pluripotency and a potential to produce chimeric embryos or mice when reaggregatation with mSSC is performed.

  • PDF

Resistance Evaluation of Radish (Raphanus sativus L.) Inbred Lines against Turnip mosaic virus (순무모자이크바이러스에 대한 무 육종 계통 저항성 평가)

  • Yoon, Ju-Yeon;Choi, Gug-Seoun;Kim, Su;Choi, Seung-Kook
    • Research in Plant Disease
    • /
    • v.23 no.1
    • /
    • pp.60-64
    • /
    • 2017
  • Leaves of twenties radish (Raphanus sativus L.) inbred lines were mechanically inoculated with Turnip mosaic virus (TuMV) strain HY to evaluate TuMV resistance of the radish inbred lines. The inoculated radish plants were incubated at $22^{\circ}C{\pm}3^{\circ}C$ and resistance assessment was examined using symptom development for 4 weeks. Based on the reactions of differential radish inbred lines, 16 radish lines were produced mild mosaic, mottling, mosaic and severe mosaic symptoms by TuMV infection. These results were confirmed by RT-PCR analysis of TuMV coat protein gene, suggesting that TuMV is responsible for the disease symptoms. Four resistant radish lines did not induce systemic mosaic symptoms on upper leaves and chlorosis in stem tissues for 4 weeks, showing they were symptomless by 8 weeks. Further examination of TuMV infection in the 4 radish lines showed no TuMV infection in all systemic leaves. These results suggest that the 4 radish lines are highly resistant to TuMV.

First Report of Apricot pseudo-chlorotic leaf spot virus Infecting Peach Trees in South Korea (복숭아나무에서 검출된 Apricot pseudo-chlorotic leaf spot virus의 국내 첫 보고)

  • Bak, Sangmin;Seo, Euncheol;Kim, San Yeong;Park, Won Heum;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.23 no.1
    • /
    • pp.75-81
    • /
    • 2017
  • In May 2016, 24 peach samples showing abnormal and virus like symptoms were collected in one of major peach producing area, Yeongcheon-si, Gyeongsangbuk-do, Korea. We performed RT-PCR diagnosis for confirmation of viral infection. The diagnostic targets are 17 species of viruses and viroids that quarantine and high risk pathogens when it occur. As a results, seven species of viruses and viroids, including an unreported (Apricot pseudo-chlorotic leaf spot virus, APCLSV) and a quarantine (Peach latent mosaic viroid, PLMVd) species in Korea, were detected. For the sequence analysis of unreported virus, APCLSV, the sequence of coat protein gene were amplified and cloned. The sequence showed 97% nucleotide identity with other APCLSV isolates and compared with other seven species of reported Trichoviruses. This virus was classified as APCLSV based on the sequence and phylogenetic analysis. This isolate was named Yeongcheon. As patterns of APCLSV occurrence, all samples that APCLSV detected were co-infected with Apple chlorotic leaf spot virus (ACLSV). As properties of ACLSV, APCLSV has high possibility of wide spread disease in fruit tree farms in Korea. Therefore, it is necessary to do related researches, such as infection route and influence of disease in commercial orchards.

Viroid-the Smallest Plant Pathogen (바이로이드-가장 작은 식물병원체)

  • Lee Jai Youl
    • Korean Journal Plant Pathology
    • /
    • v.1 no.3
    • /
    • pp.199-206
    • /
    • 1985
  • Viroids are the smallest. well-characterized infectious agents presently known. and so far viroids have been found only in higher plants. The structures of viroid-molecules are single-stranded, covalently closed circular RNA molecules with a range of 240 to 380 nucleotides according to the various viroids. Viroids are remarkable not only as a new category of pathogen, which cause economically important diseases, but also as an excellent model system for biochemical and biophysical investigations because of their small size, relative stability and their self-replication. Four different patato spindle tuber viroid isolates, which express the different symptoms on the same host plant exchange only 2 to 6 nucleotides in the total number of 359 nucleotides, but now the mechanism of viroid pathogenicity is not explained fully. Viroid-melecules are replicated without any special viroid-associated proteins, and during the process of viroid replication oligomeric viroid-associated RNAs are detected at nuclei of viroid infected leaf tissue. The mechanism of viroid replication can now be illustrated according to a possible explanation of rolling-circle system. Although the rapid progress have been made in elucidation of the biochemical and biophysical properties of PSTV and other viroids, the mechanism of viroid replication and pathogenicity is less known and is still a matter of speculation. When these problems can be sufficiently explained, the viroid molecule could play an important role as an available vector in plant genetic engineering.

  • PDF