DOI QR코드

DOI QR Code

Impact of Virus-resistant Trigonal Cactus Cultivation on Soil Microbial Community

바이러스저항성 삼각주 재배가 토양 미생물상에 미치는 영향

  • 오성덕 (농촌진흥청 국립농업과학원) ;
  • 김종범 (농촌진흥청 국립농업과학원) ;
  • 이정진 (경기도 농업기술원 선인장연구소) ;
  • 김민경 (농촌진흥청 국립농업과학원) ;
  • 안병옥 (농촌진흥청 국립농업과학원) ;
  • 손수인 (농촌진흥청 국립농업과학원) ;
  • 박종석 (농촌진흥청 국립농업과학원) ;
  • 류태훈 (농촌진흥청 국립농업과학원) ;
  • 조현석 (농촌진흥청 국립농업과학원) ;
  • 이기종 (농촌진흥청 국립농업과학원)
  • Received : 2013.03.21
  • Accepted : 2013.05.12
  • Published : 2013.06.30

Abstract

BACKGROUND: Genetically modified(GM) trigonal cactus(Hylocereus trigonus Saff.) contained a coat protein gene of cactus virus X (CVX), which conferred resistance to the virus, phosphinothricin acetyltransferase (bar) gene, which conferred herbicide resistance, and a cauliflower mosaic virus 35S promoter (CaMV 35S). This study was conducted to evaluate the possible impact of GM trigonal cactus cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere of GM and non-GM trigonal cactus cultivation soils. The total numbers of bacteria, and actinomycete in the rhizosphere soils cultivated GM and non-GM trigonal cactus were similar to each other, and there was no significant difference. Dominant bacterial phyla in the rhizosphere soils cultivated with GM and non-GM trigonal cactus were Proteobacteria, Uncultured archaeon, and Uncultured bacterium. The denaturing gradient gel electrophoresis (DGGE) profiles show a similar patterns, significant difference was not observed in each other. DNA was isolated from soil cultivated GM and non-GM trigonal cactus, we analyzed the persistence of the inserted gene by PCR. Amplification of the inserted genes was not observed in the soil DNA, which was collected after harvest. CONCLUSION(S): This result suggests that the GM trigonal cactus cultivation does not change significantly the microbial community.

본 연구는 CVX 바이러스저항성 삼각주 재배가 토양 미생물에 미치는 영향과 수평적 유전자 이동성을 확인하기 위해 수행되었다. 생육시기별 토양 세균과 방선균 군집밀도는 형질전환 삼각주 재배 토양의 미생물 군집밀도와 비형질전환 삼각주 군집밀도가 유사하여 토양 미생물에 미치는 영향은 유사할 것으로 추정되었다. 토양 미생물의 우점종은 Proteobacteria, Uncultured archaeon와 Uncultured bacterium으로 나타났으며, 형질전환 삼각주 재배 토양의 우점종과 비율은 거의 일정하게 유지되었다. 근권 토양 DNA의 DGGE 분석을 통해 형질전환 삼각주와 비형질전환 삼각주 토양 미생물 군집의 profile 변화는 나타나지 않았다. 형질전환 삼각주와 비형질전환 삼각주 재배 토양의 화학성은 차이가 없었다. 형질전환 삼각주에 도입된 유전자로 토양 DNA에 대한 PCR 분석결과, 도입 유전자의 잔존성이 길지 않아 수평적 유전자 이동 가능성은 희박할 것으로 추정되었다.

Keywords

References

  1. Badosa, E., Moreno, C., Montesinos, E., 2004. Lack of detection of ampicillin resistance gene transfer from Bt176 transgenic corn to culturable bacteria under field conditions, FEMS microbiology ecology 48, 169-178. https://doi.org/10.1016/j.femsec.2004.01.005
  2. Brookes, G., Barfoot, P., 2006. Global impact of biotech crops: Socio-economic and environmental effects in the first ten years of commercial use, AgBioForum 9, 139-151.
  3. Conner, A.J., Glare, T.R., Nap, J.P., 2003. The release of genetically modified crops into the environment; Part II. Overview of ecological risk assessment, Plant J. 33, 19-46. https://doi.org/10.1046/j.0960-7412.2002.001607.x
  4. Filion, M., 2008. Do transgenic plants affect rhizobacteria populations?, Microb. Biotechnol. 1, 463-475. https://doi.org/10.1111/j.1751-7915.2008.00047.x
  5. Germida, J.J., Dunfield, K.E., 2004. Impact of genetically modified crops on soil-and plant-associated microbial communities, J. Environ. Qual. 33, 806-815. https://doi.org/10.2134/jeq2004.0806
  6. Hsieh, Y.T., Pan, T.M., 2006. Influence of planting papaya ringspot virus resistant transgenic papaya on soil microbial biodiversity, J. Agric. Food Chem. 54, 130-137. https://doi.org/10.1021/jf051999i
  7. James, C., 2012. Global Status of Commercialized Biotech/GM Crops: 2012, ISAAA Brief No. 44. ISAAA, Ithaca, NY.
  8. Jung, H., 2011. 2011 Biosafety white paper, p. 315-328, Korea research institute of bioscience and biotechnology, Daejeon, Korea.
  9. Kardol, P., Bezemer, T.M., Van Der Putten, W.H., 2006. Temporal variation in plant-soil feedback controls succession, Ecol. Lett. 9, 1080-1088. https://doi.org/10.1111/j.1461-0248.2006.00953.x
  10. Kim, M.C., Ahn, J.H., Shin, H.C., Kim, T., Ryu, T.H., Kim, D.H., Song, H.G., Lee, G.H., Kai, J.O., 2008. Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204, J. Microbiol. Biotech. 18, 207-218.
  11. Konig, A., Cockburn, A., Crevel, R.W.R., Debruyne, E., Grafstroem, R., Hammerling, U., Kimber, I., Knudsen, I., Kuiper, H.A., Peijnenburg, A.A.C., Penninks, A.H., Poulsen, M., Schauzu, M., Wal, J.M., 2004. Assessment of the safety of foods derived from genetically modified (GM) crops, Food Chem. Toxicol. 42, 1047-1088. https://doi.org/10.1016/j.fct.2004.02.019
  12. Lee, H.H., Kim, K.H., Kang, J.Y., 2006. Comparison of the european standard methods and the rural development administration methods for determining chemical properties of horticultural substrates, Korean J. Hort. Sci. Technol. 24, 425-430.
  13. Lorenz, M.G., Blum, S.A.E., Wackernagel, w., 1997. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils, Syst. Appl. Microbiol. 20, 513-521. https://doi.org/10.1016/S0723-2020(97)80021-5
  14. Miethling, R., Wieland, G., Backhaus, H., Tebbe, C.C., 2000. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33, Microbial. Ecol. 40, 43-56. https://doi.org/10.1007/s002480000021
  15. NIAST, 2000. Methods of analysis of soil and plant, National Institute of Agricultural Science and Technology, Suwon, Korea.
  16. OECD, 2010. Safety assessment of transgenic organisms, Volume 4: OECD Consensus Documents, p. 171-174
  17. Owen, M.D.K., 2000. Current use of transgenic herbicideresistant soybean and corn in the USA, Crop Prot. 19, 765-771. https://doi.org/10.1016/S0261-2194(00)00102-2
  18. Sharma, S., Aneja, M.K., Mayer, J., Munch, J.C., Schloter, M, 2005. Characterization of bacterial community structure in rhizosphere soil of grain legumes, Microbial. Ecol. 49, 407-415. https://doi.org/10.1007/s00248-004-0041-7
  19. Smalla, K., Gebhard, F., 1999. Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer, Fems Microbiol. Ecol. 28, 261-272. https://doi.org/10.1111/j.1574-6941.1999.tb00581.x
  20. Wei, X.D., Zou, H.L., Chu, L.M., Liao, B., Ye, C.M., Lan, C.Y., 2006. Field released transgenic papaya affects microbial communities and enzyme activities in soil, Plant and soil 285, 347-358. https://doi.org/10.1007/s11104-006-9020-8
  21. Widmer, F., Seidler, R.J., Donegan, K.K. Reed, G.L., 1997. Quantification of transgenic plant marker gene persistence in the field, Mol. Ecol. 6, 1-7. https://doi.org/10.1046/j.1365-294X.1997.00145.x

Cited by

  1. The GMO Industry: A Neglected Earthly Frontier 2018, https://doi.org/10.1080/19320248.2016.1227755