• Title/Summary/Keyword: coat protein (CP)

Search Result 130, Processing Time 0.028 seconds

Survey of Viruses Present in Radish Fields in 2014 (2014년 전국 무 재배지의 바이러스 병 발생 조사)

  • Chung, Jinsoo;Han, Jae-Yeong;Kim, Jungkyu;Ju, Hyekyoung;Gong, Junsu;Seo, Eun-Young;Hammond, John;Lim, Hyoun-Sub
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.235-242
    • /
    • 2015
  • A 2014 nationwide survey in radish fields investigated the distribution of common viruses and possible emerging viruses. Radish leaves with virus-like symptoms were collected and 108 samples assayed by RT-PCR using specific primers for Radish mosaic virus (RaMV), Cucumber mosaic virus (CMV), and Turnip mosaic virus (TuMV); 47 samples were TuMV positive, and RaMV and CMV were detected in 3 and 2 samples, respectively. No samples showed double infection of TuMV/RaMV, or RaMV/CMV, but two double infections of TuMV/CMV were detected. TuMV isolates were sorted by symptom severity, and three isolates (R007-mild; R041 and R065-severe) selected for BLAST and phylogenetic analysis, which indicated that the coat protein (CP) of these isolates (R007, R041, and R065) have approx. 98-99% homology to a previously reported TuMV isolate. RaMV CP showed approx. 99% homology to a previously reported isolate, and the CMV CP is identical to a previously reported Korean isolate (GenBank : GU327368). Three isolates of TuMV showing different pathogenicity (degree of symptom severity) will be valuable to study determinants of pathogenicity.

Characteristics of Cucumber mosaic virus-GTN and Resistance Evaluation of Chilli Pepper Cultivars to Two Cucumber mosaic virus Isolates (고추에서 분리한 오이모자이크바이러스(CMV-GTN)의 특성과 고추 품종의 저항성 평가)

  • Choi, Gug-Seoun;Kwon, Sun-Jung;Choi, Seung-Kook;Cho, In-Sook;Yoon, Ju-Yeon
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.99-102
    • /
    • 2015
  • Cucumber mosaic virus (CMV) is one of the most destructive viruses in chilli pepper. An isolate of CMV was obtained from the chilli pepper cv. Chungyang showing top necrosis symptom in 2013 and designated as CMV-GTN. CMV-GTN was compared with the well-characterized isolate, CMV-Ca-P1, by investigating their amino acid sequences of the coat protein (CP) and biological reactions in several host plants. The CP of CMV-Ca-P1 composed of 217 amino acids but that of CMV-GTN composed of 218 amino acids by including additional valine in the $57^{th}$ amino acid position. Amino acid sequence similarity of the CP gene among CMV-GTN and other CMV isolates recorded in the GeneBank database ranged from 96% to 99%. CMV-GTN was selected as a representative isolate to screen the resistance pepper cultivars to CMV because it was highly pathogenic to tomatoes and peppers upon biological assays. The virulence of CMV-GTN was tested on 135 pepper cultivars which has been bred in Korea and compared with that of CMV-Ca-P1. Only the cv. Premium was resistant and three cvs. Hot star, Kaiser, and Good choice were moderately resistant to CMV-GTN, whereas two cvs. Baerotta and Kaiser were resistant to CMV-Ca-P1.

Molecular Breeding of Tobacco Plants Resistant to TMV and PVY (분자생물학적 TMV 및 PVY 저항성 연초 육종)

  • E.K. Pank;Kim, Y.H.;Kim, S.S.;Park, S.W.;Lee, C.H.;K.H.Paik
    • Proceedings of the Korean Society of Tobacco Science Conference
    • /
    • 1997.10a
    • /
    • pp.134-152
    • /
    • 1997
  • Plant viruses of tobacco including tobacco mosaic virus (TMV) and potato virus Y (PVY) cause severe economic losses in leaf-tobacco production. Cultural practices do not provide sufficient control against the viruses. Use of valuable resistant cultivars is most recommendable for the control of the viruses. However, conventional breeding programs are not always proper for the development of virus-resistant plants mostly owing to the frequent lack of genetic sources and introduction of their unwanted properties. Therefore, we tried to develop virus-resistant tobacco plants by transforming commercial tobacco cultivars, NC 82 and Burley 21, with coat protein (CP) or replicase (Nlb) genes of TMV and PVY necrosis strain (PVY-VN) with or without untranslated region (UTR) and with or without mutation. Each cDNA was cloned and inserted in plant expression vectors with 1 or 2 CaMV 35S promotors, and introduced into tobacco leaf tissues by Agrobacterium tumefaciens LBA 4404. Plants were regenerated in kanamycin-containing MS media. Regenerated plants were tested for resistance to TMV and PVY In these studies, we could obtain a TMV-resistant transgenic line transformed with TMV CP and 6 genetic lines with PVY-VN cDNAs out of 8 CP and replicase genes. In this presentation, resistance rates, verification of gene introduction in resistant plants, stability of resistance through generations, characteristics of viral multiplication and translocation in resistant plants, and resistance responses relative to inoculum potential and to various PVY strains will be shown. Yield and quality of leaf tobacco of a promising resistant tobacco line will be presented.

  • PDF

Complete Genome Sequence Analysis of Two Divergent Groups of Sweet potato chlorotic fleck virus Isolates Collected from Korea

  • Kwak, Hae-Ryun;Kim, Jaedeok;Kim, Mikyeong;Seo, Jang-Kyun;Kim, Jeong-Soo;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.451-457
    • /
    • 2018
  • The Sweet potato chlorotic fleck virus (SPCFV), of the genus Carlavirus (family Betaflexiviridae), was first detected as one of several viruses infecting sweet potatoes (Ipomea batatas L.) in Korea. Out of 154 sweet potato samples collected in 2012 that were showing virus-like symptoms, 47 (31%) were infected with SPCFV, along with other viruses. The complete genome sequences of four SPCFV isolates were determined and analyzed using previously reported genome sequences. The complete genomes were found to contain 9,104-9,108 nucleotides, excluding the poly-A tail, containing six putative open reading frames (ORFs). Further, the SPCFV Korean isolates were divided into two groups (Group I and Group II) by phylogenetic analysis based on the complete nucleotide sequences; Group I and Group II had low nucleotide sequence identities of about 73%. For the first time, we determined the complete genome sequence for the Group II SPCFV isolates. The amino acid sequence identity in coat proteins (CP) between the two groups was over 90%, whereas the amino acid sequence identity in other proteins was less than 80%. In addition, SPCFV Korean isolates had a low amino acid sequence identity (61% CPs and 47% in the nucleotide-binding protein [NaBp] region) to that of Melon yellowing-associated virus (MYaV), a typical Carlavirus.

RNA silencing-mediated resistance is related to biotic / abiotic stresses and cellular RdRp expression in transgenic tobacco plants

  • Wu, Xiao-Liang;Hou, Wen-Cui;Wang, Mei-Mei;Zhu, Xiao-Ping;Li, Fang;Zhang, Jie-Dao;Li, Xin-Zheng;Guo, Xing-Qi
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.376-381
    • /
    • 2008
  • The discovery of RNA silencing inhibition by virus encoded suppressors or low temperature leads to concerns about the stability of transgenic resistance. RNA-dependent RNA polymerase (RdRp) has been previously characterized to be essential for transgene-mediated RNA silencing. Here we showed that low temperature led to the inhibition of RNA silencing, the loss of viral resistance and the reduced expression of host RdRp homolog (NtRdRP1) in transgenic T4 progeny with untranslatable potato virus Y coat protein (PVY-CP) gene. Moreover, RNA silencing and the associated resistance were differently inhibited by potato virus X (PVX) and tobacco mosaic virus (TMV) infections. The increased expression of NtRdRP1 in both PVX and TMV infected plants indicated its general role in response to viral pathogens. Collectively, we propose that biotic and abiotic stress factors affect RNA silencing-mediated resistance in transgenic tobacco plants and that their effects target different steps of RNA silencing.

Molecular Screening and Characterization of Antiviral Potatoes

  • Tripathi, Giriraj;Li, Hongxain;Park, Jae-Kyun;Park, Yoon-Kyung;Cheong, Hyeon-Sook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.89-95
    • /
    • 2006
  • Potato plants carrying the Ry gene are extremely resistance to a number of potyviruses, but it is not known which variety expressed the resistance. In this investigation, combined classical and molecular techniques were used to identify virus resistance potatoes. Mechanical inoculation of 32 varieties of Korean potato cultivars, with potato virus Y (PVY), induced various symptoms, such as mosaic, yellowing, necrosis, mottle, vein clearing and vein bending. Different virus spreading patterns were observed, such as highly sensitive, moderate and resistant to $PVY^o$ inoculated leaves in different cultivars. From the results of double antibody sandwich-enzyme links immunosorbant assays (DAS-ELISA), coupled with reverse transcription polymerase chain reaction (RT-PCR), Winter valley and Golden valley were found to be highly susceptible and resistant cultivars to $PVY^o$ respectively. TEM was used as a complementary method to conform the localization of the virus in leaf tissues. TEM detect virus particles in Golden valley, where, ELISA and RT-PCR were unable to detect the CP gene. However, the interior part of the tissues was severely deformed in $PVY^o$ infected Winter valley, than Golden valley The Ry gene is involved in an induced response in $PVY^o$ infected Golden valley plants. The methods described in this study could be applied for the screening and development of antiviral potatoes.

Rapid and Sensitive Detection of Lettuce Necrotic Yellows Virus and Cucumber Mosaic Virus Infecting Lettuce (Lactuca sativa L.) by Reverse Transcription Loop-Mediated Isothermal Amplification

  • Zhang, Yubao;Xie, Zhongkui;Fletcher, John D;Wang, Yajun;Wang, Ruoyu;Guo, Zhihong;He, Yuhui
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.76-86
    • /
    • 2020
  • Cucumber mosaic virus (CMV) is damaging to the growth and quality of lettuce crops in Lanzhou, China. Recently, however, for the first time an isolate of lettuce necrotic yellows virus (LNYV) has been detected in lettuce crops in China, and there is concern that this virus may also pose a threat to lettuce production in China. Consequently, there is a need to develop a rapid and efficient detection method to accurately identify LNYV and CMV infections and help limit their spread. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays were developed to detect the nucleoprotein (N) and coat protein (CP) genes of LNYV and CMV, respectively. RT-LAMP amplification products were visually assessed in reaction tubes separately using green fluorescence and gel electrophoresis. The assays successfully detected both viruses in infected plants without cross reactivity recorded from either CMV or LNYV or four other related plant viruses. Optimum LAMP reactions were conducted in betaine-free media with 6 mM Mg2+ at 65℃ for LNYV and 60℃ for 60 min for CMV, respectively. The detection limit was 3.5 pg/ml and 20 fg/ml using RT-LAMP for LNYV and CMV plasmids, respectively. Detection sensitivity for both RT-LAMP assays was greater by a factor of 100 compared to the conventional reverse transcription polymerase chain reaction assays. This rapid, specific, and sensitive technique should be more widely applied due to its low cost and minimal equipment requirements.

Ribgrass Mosaic Tobamovirus Occurred on Chinese Cabbage in Korea

  • Kim, Jeong-Soo;Cho, Jeom-Deog;Choi, Hong-Soo;Lee, Soo-Heon;Choi, Gug-Seoun;Lee, Sang-Yong;Kim, Hye-Jeong;Yoon, Moo-Kyoung
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.328-339
    • /
    • 2010
  • A tobamovirus, Ribgrass mosaic virus (RMV), was identified newly from chinese cabbage (Brassica campestris L. pekinensis) in Korea. Virus disease incidence of RMV on chinese cabbage was 37.9% in alpine area on August in 1993. RMV induced the symptoms of necrotic ring spots, necrotic streak on midrib and malformation. RMV, Ca1 and Ca3 isolate, could infect 35 species out of 45 plants including Chenopodium amaranticolor. Physical properties of RMV Ca1 isolate were very stable as 10.8 over for dilution end point, $95^{\circ}C$ for temperature inactivation point and 18 weeks for longevity in vitro. RMV had the soil transmission rate of 75.0% for the chinese cabbages, 'Chunhawang' and 'Seoul' cultivars. The purified virions of RMV had the typical ultraviolet absorption spectrum of maximum at 260 nm and minimum at 247 nm. RMV of Ca1 isolate was related serologically with antisera of Tobacco mosaic virus (TMV)-Cym, TMV-O and Pepper mottle virus, but not related with antiserum of Odontoglossum ring spot virus. coat protein gene of RMV-Ca1, sized 473 nucleotides, encoded 158 amino acid residues. Nucleotide identity of RMV-Ca1 CP gene was 96.4% with RMV-Shanghai (GenBank accession No. of AF185272) from China and 96.0% with RMV-Impatiens (GenBank accession No. of AM040974) from Germany. Identity of amino acids between RMV-Ca1 and the two RMV isolates was 96.8%. Specific three primers were selected for rapid and easy genetic detection of RMV using Virion Captured (VC)/RT-PCR method.

Transgenic cucumber expressing the 54-kDa gene of Cucumber fruit mottle mosaic virus is highly resistance and protect non-transgenic scions from soil infection

  • Gal-On, A.;Wolf, D.;Antignus, Y.;Patlis, L.;Ryu, K.H.;Min, B.E.;Pearlsman, M.;Lachman, O.;Gaba, V.;Wang, Y.;Yang. J.;Zelcer, A.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.148.2-149
    • /
    • 2003
  • Cucumber fruit mottle mosaic tobamovirus (CFMMV) causes severe mosaic symptoms with yellow mottling on leaves and fruits, and occasionally severe wilting of cucumber plants. No genetic source of resistance against this virus has been identified. The genes coding for the coat protein or the putative 54-kDa replicase were cloned into binary vectors under control of the SVBV promoter. Agrobacterium-mediated transformation was peformed on cotyledon explants of a parthenocarpic cucumber cultivar with superior competence for transformation. R1 seedlings were evaluated for resistance to CFMMV infection by lack of symptom expression, back inoculation on an alternative host and ELISA. From a total of 14 replicase-containing R1 lines, 8 exhibited immunity, while only 3 resistant lines were found among a total of 9 CP-containing lines. Line 144 homozygous for the 54-kDa replicase was selected for further resistance analysis. Line 144 was immune to CFMMV infection by mechanical and graft inoculation, or by root infection following planting in CFMMV-contaminated soil. Additionally, line 144 showed delay of symptom appearance following infection by other cucurbit-infecting tobamoviruses. Infection of line 144 plants with various potyviruses and cucumber mosaic cucumovirus did not break the resistance to CFMMV. The mechanism of resistance of line 144 appears to be RNA-mediated, however the means is apparently different from the gene silencing phenomenon. Homozygote line 144 cucumber as rootstock demonstrated for the first time protection of a non-transformed scion from soil inoculation with a soil borne pathogen, CFMMV.

  • PDF

Identification of Papaya Ringspot Potyvirus type W infecting squash in Korea

  • T. S. Jin;Lee, S. H.;Park, J. W.;Park, H.S.;Kim, M.;D. B. Shin;J. U. Cheon;B. J. Cha
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.141.2-142
    • /
    • 2003
  • A flexuous rod-shaped virus was isolated from Cucurbita pepo leaves showing green mosaic and puckering symptoms at Anseong, Korea. Based on the biological tests, electron microscopy, and reverse transcription-polymerase chain reaction (RT-PCR), the isolate was identified as Papaya ringspot virus type Watermelon (PRSV-W). In the biological test, host range of PRSV-W was limited in the families Cucurbitaceae and Chenopodiaceae. Most susceptible cucurbit species, such as Cucurmis lanatus, Cucurmis sativus, Cucurbita pepo, and Citrullus lanatus, responded to mechanical inoculation by PRSV-W that induce green mosaic, malformation, puckering, and narrow laminae. The local lesion symptoms were produced on the inoculated leaves of Chenopodium maranticolor and C. quinoa PRSV specific primers which amplifies the part of the coat protein (CP) genes, generated a 648 bp product from 6 isolates of PRSV-W, but no amplification had been detected in other viruses including CMV, CGMMV, KGMMV, ZYMV and WMV. In electron microscopy, PRSV particles were flexuous, approximately 780 nm in length and 12 nm in width. PRSV-W is one of the worldwide viruses which has the great economic importance in cucumber, melon, squash, watermelon, and other cultivated cucurbits with ZYMV and WMV. This is the first report of PRSV-W on cucurbits in Korea.

  • PDF