DOI QR코드

DOI QR Code

Survey of Viruses Present in Radish Fields in 2014

2014년 전국 무 재배지의 바이러스 병 발생 조사

  • Chung, Jinsoo (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Han, Jae-Yeong (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Jungkyu (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Ju, Hyekyoung (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Gong, Junsu (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Seo, Eun-Young (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Hammond, John (United States Department of Agriculture-Agrocultural Research Service, Floral and Nursery Plants Research Unit) ;
  • Lim, Hyoun-Sub (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
  • Received : 2015.02.03
  • Accepted : 2015.08.03
  • Published : 2015.09.30

Abstract

A 2014 nationwide survey in radish fields investigated the distribution of common viruses and possible emerging viruses. Radish leaves with virus-like symptoms were collected and 108 samples assayed by RT-PCR using specific primers for Radish mosaic virus (RaMV), Cucumber mosaic virus (CMV), and Turnip mosaic virus (TuMV); 47 samples were TuMV positive, and RaMV and CMV were detected in 3 and 2 samples, respectively. No samples showed double infection of TuMV/RaMV, or RaMV/CMV, but two double infections of TuMV/CMV were detected. TuMV isolates were sorted by symptom severity, and three isolates (R007-mild; R041 and R065-severe) selected for BLAST and phylogenetic analysis, which indicated that the coat protein (CP) of these isolates (R007, R041, and R065) have approx. 98-99% homology to a previously reported TuMV isolate. RaMV CP showed approx. 99% homology to a previously reported isolate, and the CMV CP is identical to a previously reported Korean isolate (GenBank : GU327368). Three isolates of TuMV showing different pathogenicity (degree of symptom severity) will be valuable to study determinants of pathogenicity.

2014년 전국 무 포장의 바이러스병 발생양상과 분포조사를 실시하였다. 바이러스 병징을 나타내는 108개 시료 중 47개 시료는 TuMV가 진단되었으며 RaMV는 3개, CMV는 2개 시료에서 각각 진단되었다. TuMV와 RaMV, RaMV와 CMV의 복합감염은 나타나지 않았으나 TuMV와 CMV의 복합감염이 2개 시료에서 진단되었다. N. benthamiana에 대한 TuMV 병원성 테스트 결과, 병징의 세기에 따라 세 개의 분리주를 나누었으며 외피단백질의 아미노산 서열 분석을 통하여 약한 병징을 나타내는 분리주 R007, 강한 병징을 나타내는 분리주 R041, R065를 선발하여 계통수 분석에 이용하였다. TuMV 계통수분석과 BLAST 검색결과 TuMV 분리주 3개와 기 보고된 분리주들 간의 외피단백질 아미노산 서열은 약 98-99%의 상동성을 나타내었으며, RaMV의 외피단백질의 경우 99%의 상동성을 나타내었고, CMV의 외피 단백질은 국내 기 보고된 분리주(GenBank : GU327363)와 동일하였다. TuMV 계통수에서 R007과 R041, R065는 서로 다른 그룹에 속하였으며 그룹간의 차이는 바이러스의 기주 선호도와 관련이 있을 것이라 예상하며 추후 TuMV의 병원성 결정인자 연구에 도움이 될 것으로 사료된다.

Keywords

References

  1. Anjos, J. R., Jarlfors, U. and Ghabrial, S. A. 1992. Soybean mosaic potyvirus enhances the titer of two comoviruses in dually infected soybean plants. Phytopathology 82: 1022-1027. https://doi.org/10.1094/Phyto-82-1022
  2. Cheng, H. C., Kim, S. M., Lee, K. S., Seo, J. H., Lee, E. J., Oh, J. H. and Shim, I. S. 2012. Change of antioxidant content in young radish (Raphanus sativus L.). Korean J. Hort. Sci. Technol. 30: 110-111.
  3. Choi, G. S. and Choi, J. K. 1992. Biological properties of two isolates of Turnip mosaic virus isolated from chinese cabbage and radish in Korea. Korean J. Plant Pathol. 8: 276-280
  4. Ham, Y. I. 1995. Recent occurrence of TuMV disease on radish and Chinese cabbage in alpine region, Kang-won province. Plant Dis. Agric. 1: 45-46.
  5. Kim, J. S., Lee, S. H., Choi, H. S., Kim, M. K., Kwak, H. R., Kim, J. S., Choi, J. D., Choi, I. S. and Choi, H. S. 2012. 2007-2011 Characteristics of plant virus infections on crop samples submitted from agricultural places. Res. Plant Dis. 18: 277-289. https://doi.org/10.5423/RPD.2012.18.4.277
  6. Komatsu, K., Hashimoto, M., Maejima, K., Ozeki, J., Kagiwada, S., Takahashi, S., Yamaji, Y. and Namba, S. 2007. Genome sequence of a Japanese isolate of Radish mosaic virus: the first complete nucleotide sequence of a crucifer-infecting comovirus. Arch Virol. 152: 1501-1506. https://doi.org/10.1007/s00705-007-0993-2
  7. Ku, K. H., Lee, K. A., Kim, Y. L. and Lee, M. G. 2006. Effects of pretreatment method on the surface microbes of radish (Raphanus sativus L.) leaves. J. Korean Soc. Food Sci. Nutr. 3: 649-654.
  8. Lee, H. C., Lee, Y. J. and Yang, D. C. 2009. Genetic characterization of mitochondrial DNA in novel CMS radish line. Bull. Nat. Sci. 22: 107-118.
  9. Lim, H. S., Ko, T. S., Lambert, K. N., Kim, H. G., Korban, S. S., Hartman, G. L. and Domier, L. L. 2005. Soybean mosaic virus helper component-protease enhances somatic embryo production and stabilizes transgene expression in soybean. Plant Physiol. Biochem. 43: 1014-1021. https://doi.org/10.1016/j.plaphy.2005.08.012
  10. Lim, H. S., Jang, C. Y., Bae, H. H., Kim, J. K., Lee, C. H., Hong, J. S., Ju, H. J., Kim, H. G. and Domier, L. L. 2011. Soybean mosaic virus infection and helper component-protease enhance accumulation of Bean pod mottle virus-specific siRNAs. Plant Pathol. J. 27: 315-323. https://doi.org/10.5423/PPJ.2011.27.4.315
  11. Raybould, A. F., Maskell, L. C., Edwards, M-L., Cooper, J. I. and Gray, A. J. 1999. The prevalence and spatial distribution of viruses in natural populations of Brassica oleracea. New Phytol. 141: 265-275. https://doi.org/10.1046/j.1469-8137.1999.00339.x
  12. Roossinck, M. J. 2001. Cucumber mosaic virus a model for RNA virus evolution. Mol. Plant Pathol. 2: 59-63. https://doi.org/10.1046/j.1364-3703.2001.00058.x
  13. Sanchez, F., Wang, X., Jenner, C. E., Walsh, J. A. and Ponz, F. 2003. Strains of Turnip mosaic potyvirus as defined by the molecular analysis of the coat protein gene of the virus. Virus Res. 94: 33-43. https://doi.org/10.1016/S0168-1702(03)00122-9
  14. Tochihara, H. 1968. Radish enation mosaic virus. Ann. Phytopathol. Soc. Japan 34: 129. https://doi.org/10.3186/jjphytopath.34.129

Cited by

  1. Comparison of helper component-protease RNA silencing suppression activity, subcellular localization, and aggregation of three Korean isolates of Turnip mosaic virus vol.52, pp.4, 2016, https://doi.org/10.1007/s11262-016-1330-1
  2. Nationwide survey of and selection of cabbage lines with resistance against major TuMV isolates vol.43, pp.4, 2016, https://doi.org/10.7744/kjoas.20160058
  3. Viruses infecting Brassica crops in the Black Sea Region of Turkey vol.66, pp.7, 2016, https://doi.org/10.1080/09064710.2016.1199731
  4. Sequence variations among seventeen new radish isolates of Turnip mosaic virus showing differential pathogenicity and infectivity in Nicotiana benthamiana, Brassica rapa, and Raphanus sativus pp.1943-7684, 2019, https://doi.org/10.1094/PHYTO-12-17-0401-R