• Title/Summary/Keyword: coastal diatoms

Search Result 106, Processing Time 0.026 seconds

The Study on the Phytoplankton Bloom and Primary Productivity in Lake Shihwa and Adajcent Coastal Areas (시화호와 시화호 주변 해역 식물플랑크톤의 대증식과 일차 생산력에 관한 연구)

  • Choi, Joong-Ki;Lee, Eun-Hee;Noh, Jae-Hoon;Huh, Sung-Hoi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.78-86
    • /
    • 1997
  • To clarify the phytoplankton blooms in Lake Shihwa after the construction of a dyke, a study on the environmental factors, the distribution of chlorophyll-a, phytoplankton standing stocks, dominant species and primary productivity was carried out in Lake Shihwa and adjacent coastal areas from October, 1995 to August, 1996. Lake Shihwa is brackish water with mixing of freshwater from tributaries and the remaining salt water at the bottom. The dense phytoplankton bloom of average value of 168.6 ${\mu}gChl-a\;l^{-1}$ have occurred throughout the year in Lake Shihwa which is eutrophicated by the large input of nutrients from inflowing 5 tributaries and Shihwa Industrial Complex. The major organisms of algal bloom in Lake Shihwa were diatoms, Cyclotella atomus, Nitzschia sp. and Chaetoceros sp. in autumn and winter, and dinoflagellate Prorocentrum minimum and Chrysophyceae in spring and summer. The autumn and winter diatom blooms were limited by the depletion of silicate in the lake. Diatom blooms have occurred in the coastal areas adjacent to Shihwa lake from winter to summer due to the inflow of nutrient rich-water from Lake Shihwa. The primary productivities in the Lake Shihwa ranged from 2,653 mgC $m^{-2}\;day^{-1}$ to 9,505 mgC $m^{-2}\;day^{-1}$ with an average of 3,972 mgC $m^{-2}\;day^{-1}$. However, most of the high primary production was limited to the shallow euphotic zone due to the inhibition of light penetration. The primary productivities during autumn and winter were limited by the depletion of silicate. Lack of photosynthesis and the decomposition of falling organic matter under the middle of water column accelerated the depletion of dissolved oxygen in the bottom layer.

  • PDF

Influences of Coastal Upwelling and Time Lag on Primary Production in Offshore Waters of Ulleungdo-Dokdo during Spring 2016 (2016년 춘계 울릉도-독도주변해역에서 동해 연안 용승과 시간차에 의한 일차생산력 영향)

  • Baek, Seung Ho;Kim, Yun-Bae
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.156-164
    • /
    • 2018
  • In order to investigate the upwelling and island effects following the wind storm events in the East Sea (i.e., Uljin-Ulleungdo-Dokdo line) during spring, we assessed the vertical and horizontal profiles of abiotic and biotic factors, including phytoplankton communities. The assessment was based on the Geostationary Ocean Color Imager (GOCI) and field survey data. A strong south wind occurred on May 3, when the lowest sea level pressure (987.3 hPa) in 2016 was observed. Interestingly, after this event, huge blooms of phytoplankton were observed on May 12 along the East Korean Warm Current (EKWC), including the in the offshore waters of Ulleungdo and Dokdo. Although the diatoms dominated the EKWC area between the Uljin coastal waters and Ulleungdo, the population density of raphidophytes Heterosigma akashiwo was high in the offshore waters of Ulleungdo-Dokdo. Based on the vertical profiles of Chlorophyll-a (Chl. a), the sub-surface Chl. a maximum appeared at 20 m depths between Uljin and Ulluengdo, whereas relatively high Chl. a was distributed equally across the entire water column around the waters of Ulleungdo and Dokdo islands. This implies that the water mixing (i.e., upwelling) at the two islands, that occurred after the strong wind event, may have brought the rapid proliferation of autotrophic algae, with nutrient input, to the euphotic layer. Therefore, we have demonstrated that a strong south wind caused the upwelling event around the south-eastern Korean peninsula, which is one of the most important role in occurring the spring phytoplankton blooms along the EKWC. In addition, the phytoplankton blooms may have potentially influenced the oligotrophic waters with discrete time lags in the vicinity of Ulleungdo and Dokdo. This indicates that the phytoplankton community structure in the offshore waters of Ulleungdo-Dokdo is dependent upon the complicated water masses moving related to meandering of the EKWC.

Distribution and Species Composition of Phytoplankton in the Southern Waters of Korea and their Relation to the Character of Water Masses (한국남해의 식물플랑크톤의 분포와 수괴특성)

  • PARK Joo-Suck;LEE Sam-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.208-214
    • /
    • 1990
  • Phytoplankton samples for this study were collected by Van Dorn Sampler at 28 oceanographic stations in the southern waters of Korea in February, April and August, 1988 to characterize the distribution and species composition of phytoplankton and their relation to the movement of water masses. During the study periods, phytoplankton standing crops in the southern waters were maximum in April and minimum in February. When the geographical distribution and abundance of the phytoplankton were considered, the highest standing crops were found near the front zone formed between Cheju Island and Tsushima Island. Therefore, their abundance depends ell the location of the front zone. On the other hand, there were relatively low standing crops in the open sea off the coastal area from the front zone in February and August. The cause of the unusal low standing crops found in August at the station 205/01, the central part of the coastal area of the southern waters where the largest standing crops occurred in February and April, seems to be due to the intrusion of Tsushima warm waters. This is because the waters at the station have high temperature and salinity, poor dissolved oxygen and nutrient salts, which are identical to the characteristics of proper Tsushima warm waters. It seems that these warm waters may affect the poor productivity in this area. Seventy-two species in thirty-three genera of the phytoplankton were indentified from the samples. Among them, 61 species in 27 genera belong to diatoms and 12 species in 7 genera to dinoflagellates. The largest number of phytoplankton species occurred in August while the largest number of the tells in April. Predominant species were Eucampia zodiacus in February, Skeletonema costatum and Chaetoceros curvisetus in April and Chaetoceros affinis in August. Eucampia zodiacus which was dominant in February and April seems to be a indicator of the southern coastal waters of Korea and mixed waters west of Cheju Island.

  • PDF

Distribution Pattern of dominant Benthic Diatoms on the Mangyung-Dongjin Tidal Flat, West Coast of Korea (서해 만경-동진 조간대의 주요 우점 저서 규조류의 분포)

  • 오상희;고철환
    • 한국해양학회지
    • /
    • v.26 no.1
    • /
    • pp.24-37
    • /
    • 1991
  • Marine benthic diatoms and environmental factors were studied at 60 sites on the Mangyung-Dongjin tidal flat of the west coast of Korea. Sediment samples were taken quantitatively from the upper 5 mm layer to obtain a representative estimate of the epipelic and epipsammic cell concentration. Surface sediments taken simultaneously with the quantitative diatom samples were analysed for the grain size. Exposure duration of study sites were calculated by the tide data recorded at Kunsan Outer-Harbour. Coarse sediments dominated mainly on the offshore coastal and lower tidal flat, whereas fine sediments occurred on inner and higher tidal flat. Total 371 diatom taxa were collected and the genera represented by a great number were Navicula and Nizschia. The 16 abundant species occupying more than 1% of total cell number are of the following: Paralia sulcata, Navicula sp. 1, Navicula arenaria, Cymatosira belgica, Amplora holsatica, Amphora coffeaeformis, Achnanthes hauckiana, Rhaphoneis amphiceros, Thalassionema nitzschioides. Navicula sp. 2, Dimeregramma minor, Amphora sp. 1, Cyclotella atomus, C, striata, Nitzschia kuetzingiana, Stephanodiscus sp. 1. The distribution pattern of these dominant species are described in relation to the habitat condition. Most of these species showed high densities in fine sediments. However, they occurred even silty sand and sandy sediments in low abundance. The epipsammic forms belonging to the Araphidineae and Monoraphidineae were restricted on the lower tidal flat. The typical species found in coarse sediments were: Cocconeis sp. 1, Opephora martyi, Amphora sabyii, Dimeregramma minor var. nana, Fragilaria virescens var. oblongella, F. virescens, Cocconeis grata. The higher tidal flat consisting of fine sediments showed relatively higher cell numbers than the lower tidal flat. River mouth region was the highest in abundance.

  • PDF

Ecological Survey of the Nakdong River Estuary (낙동강 하구 부근의 해양 환경 조사 연구)

  • 박청길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.4
    • /
    • pp.1-20
    • /
    • 1986
  • Physical, chemical and biological surveys on Nakdong River estuary were made from October, 1985 to September, 1986. 1. For all the seasons except summer, the sea surface temperature in northwest area of the line which linked from Seo Island to Jisim Island was I-2$^{\circ}$C lower than in southeast area, but in summer the sea surface temperature in northwest area was I-2$^{\circ}$C higher than in southeast area. On the contrary, bottom temperature of coastal area was 1$^{\circ}$C higher than that of oceanic area except winter. 2. Surface salinity in summer and fall has minimum value of 1. 9%0 and maximum value of 32.9%0. This large variation was caused by the runoff of the Nakdong River. Effect of less saline Nakdong River water in northwest area of the line which linked from Seo Island to Jisim Island was greater than in southeast area. A strong current rip always formed near this line. 3. The yellowish-green colored zone was observed in the Nakdong River estuary throughout the year by influence of river discharge. The characteristics of the water quality in the zone have shown that the water color was grade 7 by the Forel water-color meter, transparency was less than 4 m, and concentration of suspended solids was more than 5 mg/1. This water body was in the state of eutrophication in terms of chlorophyll-a and inorganic nitrogen concentration during summer season. 4. During the study period, total 276 taxa were identified. Most of them were diatoms and dinoflagellates which consisted of 97.5%. The component ratio of the above two groups was 84.4% and 13.1 % respectively. Diatoms were plentiful in December and dinoflagellates in July. Dominant species were Nitzschia seriata in October, Thalassiosira rotula in December, Skeletoncma costatum in April, and Nitzschia longissima in July. 5. A total of 47 zooplankton taxa was identified from the samples collected. Copepods were numerically the most important components of zooplankton communities in the study area. The domir:ant copepod species were Paracalanus parvus, Acartia clausi and Temora turbinata. Noctiluca scintillans was the next important component. The other zooplankton with minor abundance were Cladocera. Sagitta spp., Cnidaria, Mysidacea, Lucifer spp. and Amphipoda. 6. During the study period, fishes from 47 families and 87 species were sampled in th~ study area. The four most abundant fish species were Rep~mucen//'s valencicnnei, Leiognathus n~cha!is, Amblychaeturicllthys hexanema and Sardirel/a zun:zsi. The fish species of the secondary importance in abundance were Cynoglossus joyneri, Sillago sihama, Engra~lis japonicus, Encdrias nebulos'l, Acanthogobius flavimanus, Trichiurus lepturus, LiParis tanai/ai, Cynagloss//'s interruptus, Aj)ogon line:z!us, Thrissz la 1l.'1la!ensis, and Limanda yokohamac.

  • PDF

Summer Dynamics of Phytoplankton Taxonomic Composition in a Coastal Estuarine System of Asan Bay (아산만 연안하구 식물플랑크톤의 2006년 하계 종조성 변화)

  • Yi, Hyang-Hwa;Shin, Yong-Sik;Yang, Sung-Ryull;Park, Chul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.200-210
    • /
    • 2007
  • Phytoplankton community was investigated in Asan Bay, South Korea. Samples were collected at 5 stations along Asan Bay axis during wet season from June to August, 2006. In June and July, salinity decreased especially at inside stations. Nutrients were high in June and July, however, decreased in August. We observed the community of phytoplankton including diatoms(62.8%), dinoflagellates(17.3%), cryptophytes(14.8%), euglenophytes(1.0%), cyanophytes (0.9%), chlorophytes(0.4%), and some of unidentified taxa(2.8%) during summer 2006 in Asan Bay. In June, dinoflagellates (mainly Prorocentrum sp.(29.6%)) were dominated, accounting for about 43.5% of total cell number, whereas in July and August diatoms (mainly Leptocylindrus sp.(21.4%), Chaetoceros sp.(27.6%)) were dominated occupying 69.1% and 89.9%, respectively. The results suggest that freshwater inputs affected phytoplankton community in the Asan Bay ecosystem.

Oceanic Environments and Primary Production in the Coastal Waters of Seogwipo (서귀포 연안해역의 기초생산에 영향을 미치는 해양환경)

  • CHUNG Sang-Chul;RHO Hong-Kil;PARK Kil-Soon;JEON Deuk-San
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.305-315
    • /
    • 1983
  • A survey was carried out from July to December in 1979 and 1982 for the investigation of oceanographic conditions and phytoplankton in Seogwipo coastal area. Although a peculiar coastal sea water is formed by in flowing of fresh water, this is developed mainly in summer and disappeared or weakened in its strength after November. However, this coastal sea water covers only the surface while in mid and bottom layer open sea water is approached to the coast. Therefore, coastal and open sea water appears simultaneously in narrow sea area. Mean values of nutrient concentrates on surface layer during investigating period were $3.72{\sim}16.34{\mu}g-at/l$ in silicate, $1.98{\sim}5.53{\mu}g-at/l$ in nitrate and $0.34{\sim}0.90{\mu}g-at/l$ in phosphate. These showed slight differences among places but in general coastal side were lower than open sea side. Phosphates which is the lowest in concentrates among nutrients in Seogwipo coastal area shows almost similar value with Jinhae Bay but higher than open sea water around 10 mile south of Seogwipo. In general, seasonal changes of nutrients in investigating period shows a tendency of the lowest in October, increasing in November, and again slight decrease in December. As a phytoplankton fauna, 48 species, 1 variety and 2 breeds of Diatoms, 29 species, 3 varieties and 1 breed fo Dinoflagellates, and 1 species each of Chroococcus and Trichoceratium were found. Monthly predominant species are all neritic: Rhizosolenia sp. and Ceratium sp. in August, Chaetoceros sp., Ceratium sp. and Peridinium sp. in September, Astrionella sp. and Peridinium sp. in October, Astrionella sp., Navicula sp. and Chaetoceros sp. in November Among these, Rhizosolenia alata f. gracillima in August and Astrionella gracillima in November are remarkable predominant.

  • PDF

Ecological Characteristics of Phytoplankton Communities in the Coastal Waters of Gori, Wolseong, Uljin and Younggwang II. Distributions of Standing Crops and Environmental Variables (1992~1996) (고리, 월성, 울진 및 영광 연안해역에서 식물플랑크톤 군집의 생태학적 특성 II. 현존량 분포 및 환경요인들(1992~1996))

  • 강연식;최중기
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.108-128
    • /
    • 2002
  • In order to investigate the ecological characteristics of phytoplankton communities around a nuclear power plant in Gori coastal waters of the South East Sea, Wolseong and Uljin coastal waters of the East Sea and Younggwang coastal waters of the Yellow Sea, the standing crops and chlorophyll-$\alpha$ concentrations of phytoplankton were studied during 1992~1996 and the relationships between standing crops and environmental variables were analyzed. The concentrations of nitrogenous nutrients were on average 0.101, 0.094, 0.072 and 0.108mg/$\ell$ and those of phosphorus were on average 0.007, 0.008, 0.006 and 0.009mg/$\ell$ in Gori, Wolseong, Uljin and Younggwang, respectively. The N:P ratios were highly variable, ranging from 3.2 to 57.3, from 3.1 to 109.0, from 2.6 to 102.0 and from 1.0 to 165.0 in Gori, Wolseong, Uljin and Younggwang, respectively. The concentrations of suspended solids were on average 18.7, 16.7, 11.6 and 52.7mg/$\ell$ and transparencies were on average 3.8, 5.4, 7.9 and 0.7 m in Gori, Wolseong, Uljin and Younggwang, respectively. Total standing crops of phytoplankton averaged 710,659, 687,508, 656,245 and 1,278,173cells/$\ell$ in Gori, Wolseong, Uljin and Yaunggwang, respectively. The standing crops of microplankton(>20${\mu}{\textrm}{m}$) averaged 357,546, 333,638, 276,407 and 592,975cells/$\ell$ those of nanoplankton(<20${\mu}{\textrm}{m}$) averaged 353,113, 353,870, 379,838 and 574,563cells/$\ell$ in Gori, Wolseong, Uljin and Younggwang, respectively. While standing crops of diatoms were averaged 282,009, 284,710, 238,758 and 574,563 cells/$\ell$, those of dinoflagellates were averaged 46,079, 35,401, 32,906 and 16,749 cells/$\ell$ in Gori, Wolseong, Uljin and Younggwang, respectively. The seasonal standing crops of diatoms in Gori, Wolseong and Uljin were higher in Spring than other seasons, but were lower in Summer than other seasons in Younggwang. The seasonal standing crops of dinoflagellates in Gori and Younggwang were higher in Summer than other seasons, but were higher in Autumn than other seasons in U]jin. Average of chlorophyll-$\alpha$ concentrations ranged from 2.16 to 4.28$\mu\textrm{g}$/$\ell$ in 4 study areas with the highest concentration occurred in Younggwang. Indices of species diversity ranged from 2.11 to 2.24 in 4 study areas. While community structures of phytoplankton were unstable during winter and stable during summer in Gori, Wolseong and Uljln coastal waters, those of phytoplankton were stable during winter and summer than during spring and autumn in Yaunggwang. The analysis results of Pearson product moment correlation coefficient between standing crops and environmental variables showed that distributions of standing crops were affected by transparencies, suspended solids, and some nutrient(N $O_3$$^{[-10]}$ -N, P $O_4$$^{3-}$-P), even though the degree of influences were a little different according to the season and the surveyed zone.

Plankton Community Response to Physico-Chemical Forcing in the Ulleung Basin, East Sea during Summer 2008 (2008년 하계 울릉분지에서 관측된 물리·화학적 외압에 대한 플랑크톤 군집의 반응)

  • Rho, Tae-Keun;Kim, Yun-Bae;Park, Jeong-In;Lee, Yong-Woo;Im, Dong-Hoon;Kang, Dong-Jin;Lee, Tong-Sup;Yoon, Seung-Tae;Kim, Tae-Hoon;Kwak, Jung-Hyun;Park, Hyun-Je;Jeong, Man-Ki;Chang, Kyung-Il;Kang, Chang-Keun;Suh, Hae-Lip;Park, Myung-Won
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.269-289
    • /
    • 2010
  • In Summer 2008, a multidisciplinary survey was conducted onboard R/V Haeyang 2000 to understand plankton response to the three distinct physico-chemical settings that developed in the Ulleung Basin of the East Sea. Baseline settings of hydrographic conditions included the presence of the thin (<20 m) Tsushima Surface Water (TSW) on top of the Tsushima Middle Water (TMW). It extends from the Korea Strait to $37^{\circ}N$ along the $130^{\circ}E$ and then turns offshore and encompasses the relatively saline (T>$26^{\circ}C$, S>33.7) Ulleung Warm Eddy surface water centered at $36.5^{\circ}N$ and $131^{\circ}E$. A relatively colder and saline water mass appeared off the southeastern coast of Korea. It was accompanied by higher nutrient and chlorophyll-a concentrations, suggesting a coastal upwelling. Most of the offshore surface waters support low phytoplankton biomass (0.3 mg chl-a $m^{-3}$). A much denser phytoplankton biomass (1-2.3 mg $m^{-3}$) accumulated at the subsurface layer between 20-50 m depth. The subsurface chlorophyll-a maximum (SCM) layer was closely related to the nutricline, suggesting an active growth of phytoplankton at depth. The SCM developed at shallow depth (20-30 m) near the coast and deepened offshore (50-60 m). A fucoxanthin/zeaxanthin ratio was high in coastal waters while it was low in offshore waters, which indicated that diatoms dominate coastal waters while cyanobacteria dominate offshore waters. The community structure and biomass of phytoplanktonare closely related to nitrogen availability. Zooplankton biomass was higher in the coastal region than in the offshore region while species richness showed an opposite trend. Zooplankton community structure retained a coastal/offshore contrast. These suggest that summer hydrography is a stable structure, lasting long enough to allow a hydrography-specific plankton community to evolve.

The Effect of Enhanced Zooplankton on the Temporal Variation of Plankton in a Mesocosm (인위적인 동물플랑크톤 첨가에 따른 중형 폐쇄생태계 내 플랑크톤 변동)

  • Kang Jung-Hoon;Kim Woong-Seo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.109-119
    • /
    • 2006
  • This study investigated the effect of artificially enhanced mesozooplankton on the phytoplankton dynamics during fall blooming period using a mesocosm in Jangmok bay located in the Southern Sea of Korea in 2001. The four bags with 2,500 liter seawater containment were directly filled with the ambient water. And then, abundances of mesozooplankton in two experimental bags were treated 6 times higher than those in control bags by towing with net($300{\mu}m$) through the ambient water. Phytoplankton community between control and experimental bags were not significantly different in terms of chlorophyll-a(chl-a) concentration and standing crop (one-way ANOVA, p>0.05) during the study period. Initial high standing crop and chl-a concentration of phytoplankton drastically decreased and remained low until the end of the experiment in all bags. Diatoms, accounting for most of the phytoplankton community, consisted of Skeletonema costatum, Pseudo-nitzschia seriata, Chaetoceros curvisetus, Ch. debilis, Cerataulina pelagica, Thalassiosira pacifica, Cylindrotheca closterium, and Leptocylindrus danicus. Noctiluca scintillans dominated the temporal variation of mesozooplankton abundances, which peaked on Day 10 in the control and experimental bags, while the next dominant copepods showed their peak on Day 7. Shortly after mesozooplankton addition, copepod abundance in the experimental bags was obviously higher than that in the control bags on Day 1, however, it became similar to that in the control bags during the remnant period. It was supported by the higher abundance and length of both ctenophores and hydromedusae in experimental bags relative to the control bags. However, the cascading trophic effect, commonly leading to re-increase of phytoplankton abundance, was not found in the experimental bags, indicating that copepods were not able to control the phytoplankton in the bags based on the low grazing rate of Acartia erythraea. Besides that, rapidly sunken diatoms in the absence of natural turbulence as well as N-limited condition likely contributed the no occurrence of re-increased phytoplankton in the experimental bags.

  • PDF