• Title/Summary/Keyword: coastal currents

Search Result 365, Processing Time 0.023 seconds

The Characteristics of Coastal Currents to the Northwest of the Taean Peninsula in the Yellow Sea (서해 태안반도 북서 연안해역에서의 연안류 특성)

  • Shin, Hong-Ryeol
    • Ocean and Polar Research
    • /
    • v.27 no.4
    • /
    • pp.433-441
    • /
    • 2005
  • To investigate the characteristics of tidal currents and water circulation in the coastal waters off the Taean Peninsula, tidal currents and sea levels were measured at the study area from 1998 to 2004. In the central waterway to the south of Changan Sand Ridge, mean speed of tidal currents and residual currents were 74.0cm/s, 17.8cm/s respectively; the dominant residual currents flowed northeastward, and the amplitudes of semi-diurnal components $(M_2,\;S_2)$ were larger than diurnal components $(O_1,\;K_1)$. The flood and ebb tidal currents were northeastward and southwestward, respectively, and each period was about 6 hours for them, which was consistent with the period of sea levels at the study area. In the coastal region near Hakampo, Taean, mean velocities of tidal currents and residual currents were 46.1cm/s, 30.8cm/s respectively, and the dominant residual currents flowed southwestward. The amplitudes of shallow water constituents $(M_4,\;MS_4)$ were relatively laige, which were weaker to the northeastern coastal region off Mineodo. The northeastward flow continued for about $2{\sim}3$ hours, while the southwestward flow continued for about $9{\sim}10$ hours near Hakampo during the tidal period. Tidal currents flowed northeastward in the central area of the waterway during the period from the Low Water Level (LWL) to the High Water Level (HWL). While the currents in the coastal region flowed northeastward for the first 3 hours after the LWL, southwestward counter-currents flowed between 3 and 6 hours after the LWL. During the period from the HWL to the LWL, the dominant currents flowed southwestward in the study area except to the northeastern coastal region off Mineodo. Along the shorelines, the counter-currents flowed northward between 4 and 6 hours after the HWL. It seems that the counter-currents near the coastal region are caused by the topography and the geography of the shorelines at the study area.

Numerical experiments for the changes of currents by reclamation of land in Kwangyang Bay (매립으로 인한 광양만의 유동변화 수치실험)

  • 추효상
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.637-650
    • /
    • 2002
  • This study presents an investigation of the changes of the currents in Kwangyang Bay due to the construction of harbor, reclamation and coastal developments. Currents were simulated by the numerical experiments with a diagnostic multi-level model and using the seasonal oceanographic data of temperature, salinity and ocean current. The values of kinetic and potential energies for the currents were calculated in cases of three topographical changes; before coastal developments, the existing state and after completion of the development project in Kwangyang Bay. The changes of currents due to the coastal developments are as follow; Kinetic energies of tide induced residual currents and wind driven currents decreased by 35~40 percent and 5 percent respectively, however those of density currents increased by 10 percent since the decrease of the coastal areas. Kinetic energy of residual currents including tide induced residual currents, density currents and wind driven currents reduced by 10 percent compared with before the coastal developments. Decrease of current velocity was greatest in summer. Therefore, in summer it was assumed that the Kwangyang Bay is more easily polluted by stratification and decrease of residual current than before the coastal developments carried out.

Lagrangian Observations of Currents in the Coastal Regions off East Coast of Korea (라그랑쥐 측류에 의한 동해 연안역 유동특성 관측)

  • 이문진;강용균;강신영;유홍선
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.1 no.2
    • /
    • pp.53-60
    • /
    • 1995
  • We measured lagrangian currents in the coastal regions off east coast of Korea. The experiment sites are the Ulijin region where Polar Front of the East Sea is formed and the Ulgi region where coastal upwelling occurs frequently in summer. Each drifters are equipped with GPS receiver, and their trajectories are montiored by receiving the data transmitted from drifters through radio signal. The experiment with 'transmitting' GPS is very useful in monitering flows in coastal regions. Trajectories of drifters in the Uljin Polar Front region in October 1994 showed counterclockwise flow pattern. The flow pattern agrees with the SST distributions obtained from NOAA-11 AVHRR image for the same period. The lagrangian trajectories of drifters at 5m and 15m depths in the Ulgi region for normal period of April 1995 showed that the currents at the top 15m layer are almost uniform and their magnitude is 29cm/s. However, the currents, measured by KORDI, during the upwelling period of June 1994 showed that the currents at 5m depth were 1.2 times stronger than those at 15m depth. The current pattern in the Ulgi upwelling region agrees with the horizontal and vertical distributions of seawater temperature measured by NFRDA at the same period.

  • PDF

Analysis of Wave and Current in Anmok Coastal Waters (안목해안의 파랑과 흐름 분석)

  • Lim, Hak-Soo;Kim, Mujong
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.1
    • /
    • pp.7-19
    • /
    • 2017
  • In this study, waves and currents observed by acoustic AWAC, VECTOR and Aquadopp Profiler in Anmok coastal waters were analysed to account for the variability of wave and current and to understand the mechanism of sediment transport generated by wave-induced current in the surf-zone. The monthly variation of wave and residual currents were analysed and processed with long-term observed AWAC data at station W1, located at the water depth of about 18m measured during from February 2015 to September 2016. Wave-induced currents were also analysed with intensive field measurements such as wave, current, suspended sediment, and bathymetry data observed at the surf-zone during in winter and summer. The statistical result of wave data shows that high waves coming from NNE and NE in winter (DEC-FEB) are dominant due to strong winds from NE. But in the other season waves coming from NE and ENE are prevalent due to the seasonal winds from E and SE. The residual currents with southeastern direction parallel to the shoreline are dominant throughout a year except in winter showing in opposite direction. The speed of ebb-dominant southeastern residual currents decreasing from surface to the bottom is strong in summer and fall but weak in winter and spring. By analysing wave-induced current, we found that cross-shore current were generated by swell waves mainly in winter with incoming wave direction about $45^{\circ}$ normal to the shoreline. Depending on the direction of incoming waves, longshore currents in the surf-zone were separated to southeastern and northwestern flows in winter and summer respectively. The variation of observed currents near crescentic bars in the surf-zone shows different direction of longshore and cross-shore currents depending on incoming waves implying to the reason of beach erosion generating the beach cusp and sandbar migration during high waves at Anmok.

Remote Sensing of Nearshore Currents using Coastal Optical Imagery (해안 광학영상 자료를 이용한 쇄파지역 연안류 측정기술)

  • Yoo, Jeseon;Kim, Sun-Sin
    • Ocean and Polar Research
    • /
    • v.37 no.1
    • /
    • pp.11-22
    • /
    • 2015
  • In-situ measurements are labor-intensive, time-consuming, and limited in their ability to observe currents with spatial variations in the surf zone. This paper proposes an optical image-based method of measurement of currents in the surf zone. This method measures nearshore currents by tracking in time wave breaking-induced foam patches from sequential images. Foam patches in images tend to be arrayed with irregular pixel intensity values, which are likely to remain consistent for a short period of time. This irregular intensity feature of a foam patch is characterized and represented as a keypoint using an image-based object recognition method, i.e., Scale Invariant Feature Transform (SIFT). The keypoints identified by the SIFT method are traced from time sequential images to produce instantaneous velocity fields. In order to remove erroneous velocities, the instantaneous velocity fields are filtered by binding them within upper and lower limits, and averaging the velocity data in time and space with a certain interval. The measurements that are obtained by this method are comparable to the results estimated by an existing image-based method of observing currents, named the Optical Current Meter (OCM).

A Prediction System of SS Induced by Dredging (준설공사시 부유사 확산 예측시스템의 개발)

  • 정태성;김태식;강시환
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.47-55
    • /
    • 2004
  • A SS prediction system using GUI in coastal region has been developed to predict the dispersion of the suspended sediments occurred by dredging. The prediction system uses a finite element hydrodynamic model to calculate water level and velocities and a random-walk particle tracking model to simulate SS dispersion. The system was applied to hindcast the tidal currents and SS concentrations in the Kunsan coastal waters. The simulated tidal currents showed good agreements with the observed currents. The transport model was verified for analytic solutions and field observation showing good agreements.

LARGE-SCALE CURRENTS AND SEA-BOTTOM ELEVATION CHANGE DEVELOPED BY WINTER STORMS

  • Sato, Shinji
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.89-94
    • /
    • 1996
  • Severe storms are frequently generated in winter along coasts on the Japan Sea side, which are developed by strong northwestern wind caused by periodic passages of low-pressure systems across the sea. The winter storm generally persists for several days, generating strong winds and large waves from northwest. During the storm, strong alongshore currents are also observed in the offshore region, which may continue to flow over a couple of days. (omitted)

  • PDF

Attenuation of High-Frequency Wave Energy Due to Opposing Currents

  • Suh, Kyung-Duck;Lee, Dong-Young-
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1993.07a
    • /
    • pp.20-25
    • /
    • 1993
  • In coastal waters, more often than not, waves propagate on currents driven by tidal forces, earth’s gravity, or wind. There have been a number of studies for dealing with the change of wave spectrum due to tile presence of current. Based on the conservation of wave action, Hedges et al. (1985) have proposed an equation which describes the influence of current on the change of wave spectrum in water of finite depth. (omitted)

  • PDF

Wave Modeling considering Water Level Changes and Currents Effects (수위변화와 흐름효과를 고려한 파랑모델링)

  • Eum, Ho-Sik;Kang, Tae-Soon;Nam, Soo-Yong;Jeong, Won-Moo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.383-396
    • /
    • 2016
  • In this study, wave model was conducted on the presence or absence of water level changes and currents effects in coastal waters coexisting with waves and currents, then the results were compared. The flow field applied the results of the RIAMOM model and the wave model applied the SWAN model. Among ECMWF, NCEP and JMA, wind data applied JMA data sets which agreed well with the observed data comparatively. Numerical simulation was conducted for 8 months from January to August 2016. For each case, the deviation of wave height was calculated for the high wave of more than 2.5 m for comparison with observed data. As a result, the deviation of wave height was not significant both considering water level changes and currents effects or not at wave observation stations installed in deep waters. However, a significant deviation of wave height of 5~10% was obtained depending on water level changes and currents effects at the comparison point in shallow waters.

Comparisons of Ocean Currents Observed from Drifters and TP/ERS in the East Sea

  • Lee, Dong-Kyu;Niiler, Pearn P.;Suk, Moon-Sik
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2001
  • Ocean currents estimated from sea height anomalies derived from inter-calibrated TP/ERS are compared with daily mean currents measured with satellite-tracked drifters. The correlation coefficient between the geostrophic current from TP/ERS and surface current at 15 m depth from drifter tracks was found to be about 0.5. Due to the limitation of satellite ground tracks, small scale eddies less than 80 km are poorly resolved from TP/ERS. One of the interesting results of this study is that coastal currents along the eastern coast of Korea were well reproduced from sea height anomalies when the coastal currents were developed in association with eddies near the South Korean coast. The eddy kinetic energy (EKE) estimated from drifters, TP/ERS, and a numerical model are also compared. The EKE estimated from drifters was about 22 % higher than EKE calculated from TP/ERS. The pattern of low EKE level in the northern basin and high EKE level in the southern East Sea is shown in the EKE estimates derived from both the drifters and TP/ERS.

  • PDF