• Title/Summary/Keyword: coarse aggregates

Search Result 306, Processing Time 0.028 seconds

Performance studies on concrete with recycled coarse aggregates

  • Yaragal, Subhash C.;Teja, Dumpati C.;Shaffi, Mohammed
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.263-281
    • /
    • 2016
  • Concrete continues to be the most consumed construction material in the world, only next to water. Due to rapid increase in construction activities, Construction and Demolition (C&D) waste constitutes a major portion of total solid waste production in the world. It is important to assess the amount of C&D waste being generated and analyse the practices needed to handle this waste from the point of waste utilization, management and disposal addressing the sustainability aspects. The depleting natural resources in the current scenario warrants research to examine viable alternative means, modes and methods for sustainable construction. This study reports processing Recycled Coarse Aggregates (RCA) using a rod mill, for the first time. Parameters such as amount of C&D waste for processing, nature of charge and duration of processing time have been optimized for obtaining good quality RCA. Performance of RCA based concrete and performance enhancement techniques of 50% RCA based concrete are discussed in this paper.

Mechanical, rheological, and durability analysis of self-consolidating concretes containing recycled aggregates

  • Hiwa Mollaei;Taleb Moradi Shaghaghi;Hasan Afshin;Reza Saleh Ahari;Seyed Saeed Mirrezaei
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.141-157
    • /
    • 2023
  • In the present paper, the effect of recycled aggregates on the rheological and mechanical properties of self-consolidating concrete is investigated experimentally and numerically. Hence, the specimen with two types of recycled aggregates, i.e., known and unknown resistance origins, are utilized for the studied specimens. The experiments in this study are designed using the Box-Behnken method, which is one of the response surface methods. Input variables in mixtures include silica fume in the range of 5-15% as a percentage substitute for cement weight and recycled coarse and fine aggregates in the range of 0-50% for both series of recycled materials as a substitute for natural materials. The studied responses are slump flow, V funnel, compressive strength, tensile strength, and durability. The results indicate that the increase in the amount of recycled aggregates reduces the rheological and mechanical properties of the mixtures, while silica fume effectively improves the mechanical properties. In addition, the results demonstrate that the fine recycled aggregates affect the total response of the concrete significantly. The results of tensile and compressive strengths indicate that the mixtures including 50% recycled materials with known resistance origin demonstrate better responses up to 8 and 10% compared to the materials with unknown resistance origins, respectively. Recycled materials with a specific resistance origin also show better results than recycled materials with an unknown resistance origin. Durability test results represent those concretes containing recycled coarse aggregates have lower strength compared to recycled fine aggregates. Also, a series of mathematical relationships for all the responses are presented using variance analysis to predict mixtures' rheological and mechanical properties.

An Experimental Study on the Strength Characteristic of Recycled Concrete by Curing Method (재생콘크리트의 양생 방법별 강도 특성에 관한 실험적 연구)

  • Choi Maeng Ki;Park Hee Gon;Kim Kwang Ki;Jung Kwang Sic;Jung Kuen Ho;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.723-726
    • /
    • 2005
  • As the importance of recycled materials is being emphasized more in the Korean construction market, the production quality has been improved to a significantly high level. Compared to the high quality, however, there are used very limitedly. Among recycled construction materials, recycled aggregates produced through the retreatment of waste concrete are drawing attention because of lack of natural aggregate and heightened consciousness of resource saving and environmental protection and, as a consequence, they are close to natural aggregates in terms of production technology and quality. Despite the high quality and productivity, however,. the utilization of recycled aggregates is very low. Thus, in order to maximize the utility of recycled aggregates, the present study examined the usability of recycled aggregates using both recycled coarse aggregates and recycled fine aggregates together and derived optimal quantity and mixture ratio in the combined use of the two types of recycled aggregate.

  • PDF

Fundamental Study on Optimum Mixing Proportion of Cement Concrete Pavement using Recycled Aggregate (순환골재를 활용한 포장용 시멘트콘크리트의 최적배합 도출을 위한 기초 연구)

  • Kim, Sueng Won;Kim, Yong Jae;Lee, Jang Yong;Lee, Hak Yong;Park, Cheol Woo
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.105-113
    • /
    • 2016
  • OBJECTIVES : This study is to develop the optimum mixing proportions for cement concrete pavement with using recycled aggregates. METHODS : The mixture varied recycled coarse aggregates content from 50 % to 100 % to replace the natural coarse aggregates by weight. Tests for fundamental properties as a cement concrete pavement were conducted before and after hardening of the concrete. RESULTS : It was found that the variation in the amount of the recycled aggregate affected the compressive and flexural strength development, as well as the chloride ion penetration resistance. As the amount of the recycled aggregate content increased the compressive and flexural strength and the resistance to chloride ion penetration decreased. However, the resistance to freeze-thaw reaction was affected significantly. In addition, the gradation of the aggregate became worse and hence so did the coarseness factor as the recycled aggregate amount increased. CONCLUSIONS : The fundamental properties of the concrete with recycled aggregate does not seem to be appropriate when the recycled aggregate quality is not guaranteed up to a some level and its replacement ratio is over 50%. The optimized gradation of the aggregates should also be sought when the recycled aggregate is used for the cement concrete pavement materials.

Strength and behaviour of recycled aggregate geopolymer concrete beams

  • Deepa, Raj S;Jithin, Bhoopesh
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.145-154
    • /
    • 2017
  • In the present day scenario, concrete construction is rapidly becoming uneconomical and non sustainable practice, due to the scarcity of raw materials and environmental pollution caused by the manufacturing of cement. In this study an attempt has been made to propose recycled aggregates from demolition wastes as coarse aggregate in geopolymer concrete (GPC). Experimental investigations have been conducted to find optimum percentage of recycled aggregates (RA) in GPC by replacing 20%, 30%, 40%, 50% and 60% of coarse aggregates by RA to produce recycled aggregate geopolymer concrete (RGPC). From the study it has been found that the optimum replacement percentage of recycled aggregates was 40% based on mechanical properties and workability. In order to study and compare the flexural behaviour of RGPC and GPC four beams of size $175mm{\times}150mm{\times}1200mm$ were prepared and tested under two point loading. Test results were evaluated with respect to first crack load, ultimate load, load-deflection characteristics, ductility and energy absorption characteristics. Form the experimental study it can be concluded that the addition of recycled aggregate in GPC causes slight reduction in its strength and ductility. Since the percentage reduction in strength and behaviour of RGPC is meager compared to GPC it can be recommended as a sustainable and environment friendly construction material.

Effects of Soil on the Fundamental Properties of Concrete in Coarse Aggregate (굵은골재 중 토분이 콘크리트의 기초적 특성에 미치는 영향)

  • Sin, Se-Jun;Lee, Jea-Hyeon;Park, Kyung-Teak;Park, Min-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.157-158
    • /
    • 2019
  • As the aggregate supply and demand shortages in Korea due to the lack of aggregates due to the regulation of production and use conditions of domestic aggregate collectors, the media recently pointed out the distribution of so-called bad aggregates containing soil powder. Such poor aggregates have a high self-absorption rate according to the reference, etc., leading to a decrease in the fluidity of the concrete. Therefore, in order to secure fluidity, the unit quantity increases greatly from $30kg/m^3$ to $55kg/m^3$, and the increased unit yield eventually leads to a decrease in compressive strength, resulting in a decrease in strength from about 35% to 45% compared to general aggregates. It indicates that there is a risk of shortening the life of the structure. Therefore, this study aims to analyze the effect of aggregate soil on concrete.

  • PDF

Effect of the Combination of Coarse Aggregate and Fine Aggregate on the Flowability of Ultra High Strength Concrete (굵은 골재 및 잔골재 변화가 초고강도 콘크리트의 유동특성에 미치는 영향)

  • Lee, Hong-Kyu;Lee, Sun-Jae;Kim, Sang-Sup;Park, Young-Jun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.71-72
    • /
    • 2015
  • As this study is the one related to the ultra high strength concrete essentially used for high rise buildings, it has analyzed on the flowability of ultra high strength concrete according to the variation of coarse aggregate and fine aggregate. The coarse aggregate was planned as two types including Granite Aggregate (GA) and crushed coarse Limestone Aggregate (LA) while fine aggregate was planned as four types including Sea Sand (SS), Limestone Crushed Fine Aggregates (LFA), Electric Arc Furnace Oxidizing Slag Aggregates (EFA) and Crushed Sand (CS) to perform experiment with a total of eight variables. As a result of analyzing slump flow, 500mm concentration time, U-Box and L-Flow, etc. among the characteristics of fresh concrete, a mix using LA+LFA is determined to show high flowability in case of applying ultra high strength concrete.

  • PDF

Impacts of siltstone rocks on the ordinary concrete's physical, mechanical and gamma-ray shielding properties: An experimental examination

  • R.S. Aita;K.A. Mahmoud;H.A. Abdel Ghany;E.M. Ibrahim;M.G. El-Feky;I.E. El Aassy
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2063-2070
    • /
    • 2024
  • A series of ordinary concrete is casted in order to examine the influence of the manganiferous siltstone rocks on the physical, mechanical, and gamma-ray shielding properties. Thus, a partial replacement for the coarse aggregates by siltstone rocks was performed during the fabrication of the currently ordinary concrete. The test revealed that raising the siltstone concentration improved the mechanical characteristics and density of the developed concretes. The addition of siltstone rocks at concentrations ranging from 0 to 40 wt% of the coarse aggregate concentration raises the density of the concrete from 2.05 g/cm3 to 2.3 g/cm3. Furthermore, partial substitution of basalt with siltstone rocks improves gamma-ray shielding properties. The experimental results for the linear attenuation coefficient show an increase in its value from 0.146 cm1 to 0.160 cm-1 when the siltstone concentration is increased between 0 and 40 wt% at 0.662 MeV. Furthermore, increasing the concentrations of siltstone affected the half-value thickness, which varied between 4.759 and 4.319 cm at 0.662 MeV. Therefore, the replacement presents a new alternative coarse aggregate that can enhance the mechanical and radiation shielding properties of ordinary concretes.

Development of Model Equations for Strength Properties with Age in Concrete Pavement (재령에 따른 포장용 콘크리트의 강도특성 예측식 개발)

  • Yang, Sung-Chul;Kwon, Su-Ahn;Lim, Yu-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.35-43
    • /
    • 2010
  • This study was carried out to find reliable relations between various concrete strength properties which are used as input data in concrete pavement design program. Concretes were made from different sources of coarse grained(granite, limestone and sandstone) and fine grained aggregates such as natural sand, washed sand and crushed sand. From strength test results, model equations were obtained based on the relation between strengths. For each coarse grained aggregate, models for compression-flexural strengths, compression-split tensile strengths, compressive strength-modulus and flexural-split tensile strengths with age were obtained. For concrete mixed with gneiss granite aggregates, concrete strengths were obtained from numerical mean values of concrete strengths mixed with fine grained aggregates. In addition models for concrete split tensile strengths and modulus values were provide by averaging numerically the estimated values obtained from the derived relationship and the experimental values. This is due to more scattered values of split tensile strengths and modulus values than other strength properties. Finally criteria for drying shrinkage strain as well as Poisson's ratio for concrete used in pavement were presented for all mixes with differed coarse grained aggregates.

Effect of Elevated Temperature on Mechanical Properties of Limestone, Quartzite and Granite Concrete

  • Tufail, Muhammad;Shahzada, Khan;Gencturk, Bora;Wei, Jianqiang
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • Although concrete is a noncombustible material, high temperatures such as those experienced during a fire have a negative effect on the mechanical properties. This paper studies the effect of elevated temperatures on the mechanical properties of limestone, quartzite and granite concrete. Samples from three different concrete mixes with limestone, quartzite and granite coarse aggregates were prepared. The test samples were subjected to temperatures ranging from 25 to $650^{\circ}C$ for a duration of 2 h. Mechanical properties of concrete including the compressive and tensile strength, modulus of elasticity, and ultimate strain in compression were obtained. Effects of temperature on resistance to degradation, thermal expansion and phase compositions of the aggregates were investigated. The results indicated that the mechanical properties of concrete are largely affected from elevated temperatures and the type of coarse aggregate used. The compressive and split tensile strength, and modulus of elasticity decreased with increasing temperature, while the ultimate strain in compression increased. Concrete made of granite coarse aggregate showed higher mechanical properties at all temperatures, followed by quartzite and limestone concretes. In addition to decomposition of cement paste, the imparity in thermal expansion behavior between cement paste and aggregates, and degradation and phase decomposition (and/or transition) of aggregates under high temperature were considered as main factors impacting the mechanical properties of concrete. The novelty of this research stems from the fact that three different aggregate types are comparatively evaluated, mechanisms are systemically analyzed, and empirical relationships are established to predict the residual compressive and tensile strength, elastic modulus, and ultimate compressive strain for concretes subjected to high temperatures.