• Title/Summary/Keyword: coal power plant

Search Result 534, Processing Time 0.028 seconds

Performance Evaluation of an Oxy-coal-fired Power Generation System - Thermodynamic Evaluation of Power Cycle (순산소 석탄 연소 발전 시스템의 성능 평가 - 동력 사이클의 열역학적 해석)

  • Lee, Kwang-Jin;Choi, Sang-Min;Kim, Tae-Hyung;Seo, Sang-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.1-11
    • /
    • 2010
  • Power generation systems based on the oxy-coal combustion with carbon dioxide capture and storage (CCS) capability are being proposed and discussed lately. Although a large number of lab scale studies for oxy-coal power plant have been made, studies of pilot scale or commercial scale power plant are not enough. Only a few demonstration projects for oxy-coal power plant are publicized recently. The proposed systems are evolving and various alternatives are to be comparatively evaluated. This paper presents a proposed approach for performance evaluation of a commercial 100 MWe class power plant, which is currently being considered for 'retrofitting' for the demonstration of the concept. The system is configurated based on design and operating conditions with proper assumptions. System components to be included in the discussion are listed. Evaluation criteria in terms of performance are summarized based on the system heat and mass balance and simple performance parameters, such as the fuel to power efficiency and brief introduction of the second law analysis. Also, gas composition is identified for additional analysis to impurities in the system including the purity of oxygen and unwanted gaseous components of nitrogen, argon and oxygen in air separation unit and $CO_2$ processing unit.

Desulfurization Characteristics for Anthracite Coal Power Plant by Increasing Bituminous Coal Fuel (국내 무연탄 발전소 역청탄 사용시 탈황 특성 연구)

  • Kim, Jeong-You;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.4
    • /
    • pp.71-77
    • /
    • 2008
  • The sulfur oxides is one of important materials to come about air pollution at thermal plant consuming fossil fuel. The several flue gas desulfurization equipments are installed and operated to decrease sulfur oxides. The flue gas desulfurization of our thermal plant is designed for optimizing flue gas desulfurization technical development and research by Korea Electric Power Research Institute. We operate this desulfurization equipment. Now, our country imports nearly 97 percentage of the energy source and competes with the world for the energy because of the sudden rise of raw materials cost. The fuel cost decrease of power plants is the most important factor of the operation. The fuel used in the experiment is the domestic anthracite from Kangwon Taeback and the bituminous coal from Taldinsky Mine in Russia. This Study is experimental investigations of desulfurization characteristics for domestic anthracite power plant by increasing bituminous coal. We surveyed possible parameters and conducted the performance about desulfurization equipment in Yong Dong thermal power plant.

  • PDF

Calculation of CO2 Emission for Fossil-Fired Thermal Power Plant considering Coal-Oil Mix Rate (혼소율을 고려한 화력 발전소의 CO2 대기배출량 계산)

  • Lee, Sang-Joong;Kim, Soon-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.67-72
    • /
    • 2010
  • G8 summit meeting held in July 2008 decided to set up a long-term goal, by 2050, reducing the world greenhouse emissions by half of those emitted in 1990. In November 2009, the Government announced to reduce the national $CO_2$ emission by 30[%] of BAU by 2020. Electric power industries in Korea produce most of their electricity by burning fossil fuels, and emit approximately 28[%] of national $CO_2$ emissions. Monitoring the $CO_2$ emissions. Monitoring the $CO_2$ emission of electric power plants is very important. This paper presents a method to calculate the hourly $CO_2$ emission for a thermal power plant burning mixture of coal and oil using the performance test data and coal-oil mix rate. An example of $CO_2$ emission calculation is also demonstrated.

Effect of Power Output Reduction on the System Marginal Price and Green House Gas Emission in Coal-Fired Power Generation (석탄화력발전 출력감소가 계통한계가격 및 온실가스 배출량에 미치는 영향)

  • Lim, Jiyong;Yoo, Hoseon
    • Plant Journal
    • /
    • v.14 no.1
    • /
    • pp.47-51
    • /
    • 2018
  • This study analyzed the effect of power output reduction in coal fired power generation on the change of system marginal price and green house gas emissions. Analytical method was used for electricity market forecasting system used in korea state owned companies. Operating conditions of the power system was based on the the 7th Basic Plan for Electricity Demand and Supply. This as a reference, I analyzed change of system marginal price and green house gas emission by reduced power output in coal fired power generation. The results, if the maximum output was declined as 29 [%] to overall coal-fired power plant, system marginal price is reduced 12 [%p] compared to before and decreasing greenhouse gas emissions were 9,966 [kton]. And if the low efficiency coal fired power plant that accounted for 30 [%] in overall coal-fired power plant stopped by year, system marginal price is reduced 14 [%p] compared to before and decreasing greenhouse gas emissions were 12,874 [kton].

  • PDF

A Study on the Distribution of Heavy Metal Concentrations in Marine Surface Sediments around Samcheonpo Power Plant (삼천포화력발전소 주변해역 표층퇴적물중의 중금속원소함량 분포 연구)

  • Lee, Doo-Ho;Lim, Ju-Hwan;Jeon, Byeong-Yeol;Jeong, Nyeon-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • An environmental geochemical survey of heavy metal distribution in marine surface sediments around the ocean of Samcheonpo coal-fired power plant was conducted to investigate the possibility of coal-ash leakage from ash pond and the associated heavy metal pollution in sedimental deposits due to the operation of the coal-fired power plant. The X-Ray Diffractometry (XRD) analysis showed that the main leakage point of coal-ash was limited to a single site of the first ash pond. It also appeared that the amounts of organic carbon and metal elements were positively correlated to the grain size distribution, and that Co, Cr, Cu, Fe, Ni, and Zn were bounded to organic ligands. However, the distributions of Cd, Hg, and Mn did not have any significant correlation with the sediment grain size and organic matters. In particular, the distribution of Cd appeared to be affected by the concentration of the carbonate materials in the study area.

  • PDF

Coal-fired power plants closure and just transition of port labour employment (화력발전소 폐쇄와 항만인력 고용의 공정한 전환)

  • Su-Han Woo;Du-Ri Kim
    • Korea Trade Review
    • /
    • v.45 no.5
    • /
    • pp.55-74
    • /
    • 2020
  • This study examines the policy direction and specific countermeasures for addressing possible port labour issues from the perspective of Just Transition which may be raised by closing coal fired power plants in Korea. Current energy transition policy and port labour policy in Korea are reviewed and case studies in the countries which has experienced closure of coal fired power plants are undertaken. Although it varies from country to country, a similar approach was found that the employment problem of coal fired power plant closures and measures based on Just Transition regime to mitigate the negative impacts that occur in the region are the key to successful transition. It is suggested that countermeasures for port labour should be institutionalized for providing stakeholders with legal stability covering labours not only directly employed by the plants but also employed in entities in the whole supply chains.

Identification Factor Development of Particulate Matters Emitted from Coal-fired Power Plant by FE-SEM/EDX Analysis (FE-SEM/EDX 분석법을 이용한 석탄화력발전소에서 배출되는 입자상물질의 확인자 개발)

  • Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1333-1339
    • /
    • 2017
  • Coal-fired power plants emit various Particulate Matter(PM) at coal storage pile and ash landfill as well as the stack, and affect the surrounding environment. Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray analyzer(FE-SEM/EDX) were used to develop identification factor and the physico-chemical analysis of PM emitted from a power plant. In this study, three samples of pulverized coal, bottom ash, and fly ash were analyzed. The pulverized coal was spherical particles in shape and the chemical composition of C-O-Si-Al and C/Si and C/Al ratios were 200~300 on average. The bottom ash was spherical or non-spherical particles in shape, chemical composition was O-C-Si-Al-Fe-Ca and C/Si and C/Al ratios were $4.3{\pm}4.6$ and $8.8{\pm}10.0$. The fly ash was spherical particles in shape, chemical composition was O-Si-Ai-C-Fe-Ca and C/Si and C/Al ratios were $0.5{\pm}0.2$ and $0.8{\pm}0.5$.

Case Studies on Shock Vibration at Coal Silo Structure of Power Plants (화력발전소 Coal Silo 구조물의 충격성 진동에 대한 사례 연구)

  • Im, Jung-Bin;Lee, Hong-Ki;Son, Sung-Wan;Park, Sang-Gon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.103-106
    • /
    • 2005
  • This paper reviews the dynamic load phenomenon referred to as 'silo quaking', caused shock vibration and loud noise, during gravity discharge in coal silos. Quaking in tall silo is examined using experimental data obtained from a Coal Power Plant and several experimental and numerical investigations available in the published literature. In the experiment, the acceleration was measured at various height on the silo column and floor and by doing so, not only could the variation of the amplitude of the quaking be observed, but also the propagation of waves could clearly be seen. Through an overview of recent research on this subject, it is shown that the current silo quaking is produced by slip-stick friction between the internal wall of silo and the granular material, i.e. coal.

  • PDF

The Technology for On-line Measurement of Coal Properties by using Near-Infrared (근적외선을 이용한 온라인 석탄 성상분석 방법)

  • Kim, Dong-Won;Lee, Jong-Min;Kim, Jae-Sung;Kim, Hak-Jong
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.596-603
    • /
    • 2007
  • Rapid or on-line coal analysis is of great interest in coal industry as it would allow efficient plant operation. Multivariate analysis has been applied to near-infrared(NIR) spectra coal for investigating the relationship between coal properties(%) (moisture, ash, volatile matter, fixed carbon, carbon, hydrogen, nitrogen, oxygen, sulfur), heating value(kcal/kg) and corresponding near-infrared spectral data. The quantitative analysis was carried out by applying PLS(partial least squares regression) to determine a methodology able to establish a relationship between coal properties and NIR spectral data being applied mathematical pre-treatments for minimizing the physical features of the samples. As a results of the analysis, this technique is able to classify the species of coals and to predict the all coal properties except ash, nitrogen and sulfur. The efficient operation of coal fired power plant is expected owing to real time on-line coal analysis of moisture and heating value.

Prediction of the Occurring Time of Stall for a Booster Fan in a Power Plant Combusting Low Quality Coal through Draft Loss (저품위탄 연소시 탈황용 승압송풍기 실속시점 예측)

  • Kim, Yeong-Gyun;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.8 no.4
    • /
    • pp.34-39
    • /
    • 2012
  • This study presents how low quality coal combustion affects the desulfurizer draft system by correlating of draft loss in a coal-fired thermal power plant and predicts the stall occurrence time of a booster fan. In case of low quality coal, a lot of coal is needed to generate equivalent output power, thereby the rating of increasing draft loss was faster than designed amount of coal. We surely confirmed that draft loss affects the specific energy of a booster fan strongly. On this basis, it is possible to predict the occurring time of stall for a booster fan from current operation specific energy to stall limit specific energy. This study suggests increasing speed of draft loss in each caloric value and the impact of specific energy at a booster fan, it expects to help safe operating in a thermal power plant.

  • PDF