• Title/Summary/Keyword: coal mining

Search Result 260, Processing Time 0.028 seconds

Stability analysis of settled goaf with two-layer coal seams under building load-A case study in China

  • Yao, Lu;Ning, Jiang;Changxiang, Wang;Meng, Zhang;Dezhi, Kong;Haiyang, Pan
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.245-254
    • /
    • 2023
  • Through qualitative analysis and quantitative analysis, the contradictory conclusions about the stability of the settled goaf with two-layer coal seams subject to building load were obtained. Therefore, it is necessary to combine the additional stress method and numerical simulation to further analyze the foundation stability. Through borehole analysis and empirical formula analogy, the height of water-conducting fracture zone in No.4 coal and No.9 coal were obtained, providing the calculation range of water-conducting fracture zone for numerical simulation. To ensure the accuracy of the elastic modulus of broken gangue, the stress-strain curve were obtained by broken gangue compression test in dried state of No.4 coal seam and in soaking state of No.9 coal seam. To ensure the rationality of the numerical simulation results, the actual measured subsidence data were retrieved by numerical simulation. FISH language was used to analyze the maximum building load on the surface and determine the influence depth of building load on the foundation. The critical building load was 0.16 MPa of No.4 settled goaf and was 1.6 MPa of No.9 settled goaf. The additional stress affected the water-conducting fracture zone obviously, resulted in the subsidence of water-conducting fracture zone was greater than that of bending subsidence zone. In this paper, the additional stress method was analyzed by numerical simulation method, which can provide a new analysis method for the treatment and utilization of the settled goaf.

The Influence of the Debt Ratio and Enterprise Performance of Joint Stock Companies of Vietnam National Coal and Mineral Industries Holding Corp.

  • HOANG, Thi Thuy;HOANG, Lien Thi;PHI, Thi KimThu;NGUYEN, Minh Thu;PHAN, Minh Quang
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.10
    • /
    • pp.803-810
    • /
    • 2020
  • This objective of this study is to enrich the literature by the debt ratio and enterprise performance of Joint stock companies of Vietnam National Coal and Mineral Industries Holding Corporation Limited (Vinacomin). The debt ratio is an important index of capital structure, and it influences and decides the enterprise performance. Therefore, the determination of reasonable debt ratio level is beneficial to the stable operation of Vinacomin's enterprises. Based on the research conclusion about the effect on capital structure of debt ratio from domestic and foreign scholar, collecting data from 2014-2018 of Vinacomin's enterprises as a research sample, the article conducts research on the relationship between debt ratio and business performance of Vinacomin, as measured by return on total Assets. In addition, the study uses free cash flow, company size, growth opportunity, investment opportunities, operating costs to sales ratio as control variables.The study shows the debt ratio of Joint stock companies of Vietnam National Coal and Mineral Industries Holding Corporation Limited has a negative effect on the enterprise performance. Furthermore, the research results of the article are references for Vinacomin' enterprises in the course of production and business activities, determining a reasonable debt ratio, and improving the operational performance of enterprises.

Whole-Body Vibration Exposure vis-à-vis Musculoskeletal Health Risk of Dumper Operators Compared to a Control Group in Coal Mines

  • Kumar, Vivekanand;Palei, Sanjay K.;Karmakar, Netai C.;Chaudhary, Dhanjee K.
    • Safety and Health at Work
    • /
    • v.13 no.1
    • /
    • pp.73-77
    • /
    • 2022
  • Background: Whole-body vibration (WBV) exposure of coal mine dumper operators poses numerous health hazards. The case-control study was aimed at assessing the relative musculoskeletal health risk of dumper operators' exposure to WBV with reference to the nonexposed group. Methods: Measurements of WBV exposure were taken at the operator-seat interface using a human vibration analyzer for 110 dumper operators in three coal mines. This vibration measurement was supplemented by a questionnaire survey of 110 dumper operators exposed to WBV and an equal number of workers not exposed to WBV. The relative risk of musculoskeletal disorders (MSDs) has been assessed through the case-control study design. Results: ISO guidelines were used to compare the health risk. It was observed that the prevalence of pain in the lower back was 2.52 times more in the case group compared to the control group. The case group of Mine-2 was 2.0 times more prone to vibration hazards as compared to Mine-3. Conclusion: The case group is more vulnerable to MSDs than the control group. The on-site measurement as well as the response of the dumper operators during the questionnaire survey corroborates this finding.

Mechanical model for analyzing the water-resisting key stratum to evaluate water inrush from goaf in roof

  • Ma, Kai;Yang, Tianhong;Zhao, Yong;Hou, Xiangang;Liu, Yilong;Hou, Junxu;Zheng, Wenxian;Ye, Qiang
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.299-311
    • /
    • 2022
  • Water-resisting key stratum (WKS) between coal seams is an important barrier that prevents water inrush from goaf in roof under multi-seam mining. The occurrence of water inrush can be evaluated effectively by analyzing the fracture of WKS in multi-seam mining. A "long beam" water inrush mechanical model was established using the multi-seam mining of No. 2+3 and No. 8 coal seams in Xiqu Mine as the research basis. The model comprehensively considers the pressure from goaf, the gravity of overburden rock, the gravity of accumulated water, and the constraint conditions. The stress distribution expression of the WKS was obtained under different mining distances in No. 8 coal seam. The criterion of breakage at any point of the WKS was obtained by introducing linear Mohr strength theory. By using the mechanical model, the fracture of the WKS in Xiqu Mine was examined and its breaking position was calculated. And the risk of water inrush was also evaluated. Moreover, breaking process of the WKS was reproduced with Flac3D numerical software, and was analyzed with on-site microseismic monitoring data. The results showed that when the coal face of No. 8 coal seam in Xiqu Mine advances to about 80 m ~ 100 m, the WKS is stretched and broken at the position of 60 m ~ 70 m away from the open-off cut, increasing the risk of water inrush from goaf in roof. This finding matched the result of microseismic analysis, confirming the reliability of the water inrush mechanical model. This study therefore provides a theoretical basis for the prevention of water inrush from goaf in roof in Xiqu Mine. It also provides a method for evaluating and monitoring water inrush from goaf in roof.

Development and application of a floor failure depth prediction system based on the WEKA platform

  • Lu, Yao;Bai, Liyang;Chen, Juntao;Tong, Weixin;Jiang, Zhe
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.51-59
    • /
    • 2020
  • In this paper, the WEKA platform was used to mine and analyze measured data of floor failure depth and a prediction system of floor failure depth was developed with Java. Based on the standardization and discretization of 35-set measured data of floor failure depth in China, the grey correlation degree analysis on five factors affecting the floor failure depth was carried out. The correlation order from big to small is: mining depth, working face length, floor failure resistance, mining thickness, dip angle of coal seams. Naive Bayes model, neural network model and decision tree model were used for learning and training, and the accuracy of the confusion matrix, detailed accuracy and node error rate were analyzed. Finally, artificial neural network was concluded to be the optimal model. Based on Java language, a prediction system of floor failure depth was developed. With the easy operation in the system, the prediction from measured data and error analyses were performed for nine sets of data. The results show that the WEKA prediction formula has the smallest relative error and the best prediction effect. Besides, the applicability of WEKA prediction formula was analyzed. The results show that WEKA prediction has a better applicability under the coal seam mining depth of 110 m~550 m, dip angle of coal seams of 0°~15° and working face length of 30 m~135 m.

DECOMPOSITIONS OF IDEALS IN BCI-ALGEBRAS

  • Wei, Shi-Ming;Jun, Young-Bae
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.275-278
    • /
    • 1994
  • In 1966, Iseki [4] introduced the notion of BCI-algebras which is a generalization of BCK-algebras. The ideal theory plays an important role in studying BCK/BCI-algebras. In this paper we study decompositions of ideals in BCI-algebras, and give a characterization of closed ideals. Also we define ignorable ideals in BCI-algebras, and investigates its properties.(omitted)

  • PDF

Effects of chloride ion transport characteristics and water pressure on mechanical properties of cemented coal gangue-fly ash backfill

  • Dawei Yin;Zhibin Lu;Zongxu Li;Chun Wang;Xuelong Li;Hao Hu
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.125-137
    • /
    • 2024
  • In paste backfill mining, cemented coal gangue-fly ash backfill (CGFB) can effectively utilize coal-based solid waste, such as gangue, to control surface subsidence. However, given the pressurized water accumulation environment in goafs, CGFB is subject to coupling effects from water pressure and chloride ions. Therefore, studying the influence of pressurized water on the chlorine salt erosion of CGFB to ensure green mining safety is important. In this study, CGFB samples were soaked in a chloride salt solution at different pressures (0, 0.5, 1.5, and 3.0 MPa) to investigate the chloride ion transport characteristics, hydration products, micromorphology, pore characteristics, and mechanical properties of CGFB. Water pressure was found to promote chloride ion transfer to the CGFB interior and the material hydration reaction; enhance the internal CGFB pore structure, penetration depth, and chloride ion content; and fill the pores between the material to reduce its porosity. Furthermore, the CGFB peak uniaxial compression strain gradually decreased with increasing soaking pressure, whereas the uniaxial compressive strength first increased and then decreased. The resulting effects on the stability of the CGFB solid-phase hydration products can change the overall CGFB mechanical properties. These findings are significant for further improving the adaptability of CGFB for coal mine engineering.

Influence of interaction between coal and rock on the stability of strip coal pillar

  • Gao, W.
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.151-157
    • /
    • 2018
  • The constrained conditions of roof and floor for the coal pillar affect the strength of coal pillar very seriously. To analyze the influence of rock mass for the roof and floor on the stability of coal pillar comprehensively, one method based on the mechanical method for the composite rock mass was proposed. In this method, the three rock layers of roof, floor and coal pillar are taken as the bedded composite rock mass. And the influence of rock mass for the roof and floor on the elastic core of coal pillar has been analyzed. This method can obtain not only the derived stress by the cohesive constraining forces for the coal pillar, but also the derived stress for the rock mass of the roof and floor. Moreover, the effect of different mechanical parameters for the roof and floor on the stability of coal pillar have been analyzed systematically. This method can not only analyze the stability of strip coal pillar, but also analyze the stability of other mining pillars whose stress distribution is similar with that of the strip coal pillar.

Study on failure and subsidence law of frozen soil layer in coal mine influenced by physical conditions

  • Zhang, Yaning;Cheng, Zhanbo;Lv, Huayong
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.97-109
    • /
    • 2019
  • Physical conditions play vital role on the mechanical properties of frozen soil, especially for the temperature and moisture content of frozen soil. Subsequently, they influence the subsidence and stress law of permafrost layer. Taking Jiangcang No. 1 Coal Mine as engineering background, combined with laboratory experiment, field measurements and empirical formula to obtain the mechanical parameters of frozen soil, the thick plate mechanical model of permafrost was established to evaluate the safety of permafrost roof. At the same time, $FLAC^{3D}$ was used to study the influence of temperature and moisture content on the deformation and stress law of frozen soil layer. The results show that the failure tensile stress of frozen soil is larger than the maximum tensile stress of permafrost roof occurring in the process of mining. It indicates that the permafrost roof cannot collapse under the conditions of moisture content in the range from 20% to 27% as well as temperature in the range from $-35^{\circ}C$ to $-15^{\circ}C$. Moreover, the maximum subsidence of the upper and lower boundary of the overlying permafrost layer decreases with the increase of moisture content in the range of 15% to 27% or the decrease of temperature in the range of $-35^{\circ}C$ to $-15^{\circ}C$ if the temperature or moisture content keeps consistent with $-25^{\circ}C$ or 20%, respectively.