• 제목/요약/키워드: coal chemical refining method

검색결과 3건 처리시간 0.017초

석유 및 석탄화학의 대보수작업중 벤젠노출 특성 비교 (A Comparison on the Characteristics of Benzene Exposure between the Coal chemical and Petrochemical refining method during Turnaround)

  • 정은교;유계묵;신정아;권지운;박현희;정광재;;이인섭;강성규;류향우;김영선;이병규;장재길;김원;김정만
    • 한국산업보건학회지
    • /
    • 제20권3호
    • /
    • pp.147-155
    • /
    • 2010
  • This study was conducted to investigate the benzene exposure levels in coal chemical and petrochemical refining industries during BTX turnaround (TA) processes where benzene was being produced. Three companies producing benzene were selected, one coal chemical and two petrochemical industries. TA processes were classified into three stages: shut down, maintenance, and start up. Data was analyzed by classifying the refining method into 2 groups (Petrochemistry, Coal chemistry) for 823 workers. Comparing the data from petrochemical industries with data from a coal chemical refining industry, while benzene concentration levels of long-term samples during TA were not statistically different (p> 0.05), those levels of short-term samples were significantly different (p< 0.001). About 4.79 % of data in petrochemical industries exceed the occupational exposure limits (OELs) of benzene, 1 ppm. In a coal refining methods, about 15.7% exceeded the benzene OELs. The benzene concentrations in maintenance and start up stage of TA for petrochemical refineries were higher than those in a coal chemical refinery (p <0.01). These findings suggest that the coal chemical refining site requires more stringent work practice controls compare to petrochemical refining sites during TA processes. Personal protective equipments including organic respirators should be used by TA workers to protect them from benzene overexposure.

실리콘의 제련과 정제 (Smelting and Refining of Silicon)

  • 손호상
    • 자원리싸이클링
    • /
    • 제31권1호
    • /
    • pp.3-11
    • /
    • 2022
  • 실리콘은 지각에서 가장 풍부한 금속 원소이다. 금속급 실리콘(MG-Si)은 제강공정의 탈산제, 알루미늄 산업에서 합금 원소, 유기실레인 제조, 태양전지 등의 전자산업에 사용되는 전자급 실리콘 생산 등 산업적으로 널리 응용되는 중요한 금속이다. MG-Si는 전기 아크로에서 석탄, 코크스 또는 목재 칩의 형태인 탄소와 함께 이산화규소를 용융환원하여 만들어진다. MG-Si는 Siemens 공정과 같은 화학 처리를 통해 정제되며, 대부분의 단결정 실리콘은 쵸크랄스키 방식으로 만들고 있다. 이러한 제련 및 정제 방법은 2차 실리콘 자원으로부터 새로운 재활용 공정을 개발하는 데 기여할 수 있을 것이다.

Purification of Si using Catalytic CVD

  • 조철기;이경섭;송민우;김영순;신형식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.383-383
    • /
    • 2009
  • Silicon is commercially prepared by the reaction of high-purity silica with wood, charcoal, and coal, in an electric arc furnace using carbon electrodes, so called the metallurgical refining process, which produces ~98% pure Si (MG-Si). This can be further purified to solar grade silicon (SoG-Si) by various techniques. The most problematic impurity elements are B and P because of their high segregation coefficients. In this study, we explored the possibility of the using Cat-CVD for Si purification. The existing hot-wire CVD was modified to accommodate the catalyzer and the heating source. Mo boat (1.5 cm ${\times}$ 1 cm ${\times}$ 0.2 cm) was used as a heating source. Commercially available Si was purchased from Nilaco corporation (~99% pure). This powder was kept in the Mo-boat and heated to the purification temperature. In addition to the purification by cat-CVD technique, other methods such as thermal CVD, plasma enhanced CVD, vacuum annealing was also tried. It is found that the impurities are reduced to a great extent when treated with cat-CVD method.

  • PDF