• Title/Summary/Keyword: coal and rock

Search Result 161, Processing Time 0.024 seconds

Possibility and Countermeasures of Subsidence according to Mining Method and Current Status in the Operation Mines (가행광산 채광방식과 현황에 따른 지반침하 가능성과 대책)

  • Jang, Myoung Hwan;Lee, Sang-eun
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.366-376
    • /
    • 2017
  • In this paper, we investigated the subsidence possibility and countermeasures according to the current mining method through investigation of the subsidence condition in operation mine. Most of the metal mine were broken, investigating to subsidence pattern of the Sink-hole. Coal mines are becoming more and more deep, investigating to Trough type subsidence patterns in existing mining areas. History of nonmetallic mines have not been developed for over 30 years, but large and small ground deformation problems have been investigated. Mining also has ground subsidence functionality due to time dependence by relying more heavily on empirical methods than technical methods. Therefore, it is necessary to carry out the various researches on systematic development method and prevention of subsidence of nonmetallic mines.

A Case Study on the Stability Analysis for the Road Construction above Abandoned Mine (폐광산 상부 도로 안정성 검토 사례)

  • 문상호;나승훈;이상필
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.305-317
    • /
    • 2004
  • Due to the steep and narrow characteristic of domestic coal beds, the slant chute caving or sub-level caving method have been mainly adopted in Korea, whereas the long-wall mining has been widely used all around world. However, the slant chute caving or sub-level caving method have disadvantage of not giving much information on the scale and characteristic of abandoned mines. Hence, those information on the abandoned mines in Korea are not easily available. In this study, based on the characteristic investigation of the domestic mining methods, the geological survey and safety analysis were carried out for Donghae highway section 2. Finally, the optimum ground reinforcement methods for that site were selected.

Relationship of box counting of fractured rock mass with Hoek-Brown parameters using particle flow simulation

  • Ning, Jianguo;Liu, Xuesheng;Tan, Yunliang;Wang, Jun;Tian, Chenglin
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.619-629
    • /
    • 2015
  • Influenced by various mining activities, fractures in rock masses have different densities, set numbers and lengths, which induce different mechanical properties and failure modes of rock masses. Therefore, precisely expressing the failure criterion of the fractured rock influenced by coal mining is significant for the support design, safety assessment and disaster prevention of underground mining engineering subjected to multiple mining activities. By adopting PFC2D particle flow simulation software, this study investigated the propagation and fractal evolution laws of the micro cracks occurring in two typical kinds of rocks under uniaxial compressive condition. Furthermore, it calculated compressive strengths of the rocks with different confining pressures and box-counting dimensions. Moreover, the quantitative relation between the box-counting dimension of the rocks and the empirical parameters m and s in Hoek-Brown strength criterion was established. Results showed that with the increase of the strain, the box-counting dimension of the rocks first increased slowly at the beginning and then exhibited an exponential increase approximately. In the case of small strains of same value, the box-counting dimensions of hard rocks were smaller than those of weak rocks, while the former increased rapidly and were larger than the latter under large strain. The results also presented that there was a negative correlation between the parameters m and s in Hoek-Brown strength criterion and the box-counting dimension of the rocks suffering from variable mining activities. In other words, as the box-counting dimensions increased, the parameters m and s decreased linearly, and their relationship could be described using first order polynomial function.

Stability Analysis of Vertical Pipeline Subjected to Underground Excavation (지하공간 굴착에 따른 수직파이프 구조물의 안정성해석)

  • 김종우
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.533-543
    • /
    • 2000
  • Deformation behavior and stability of vertical pipeline subjected to underground excavation have been studied by means of numerical analysis. Vortical ground displacements cause the pipe to be compressed, while horizontal ones cause it to be bent. In that region the vertical pipeline meets with the induced compressive stress and bending stress. In addition horizontal rock stress subjected to underground excavation may press the tube in its radial direction and it finally produces the tangential stress of pipe. In this study active gas well system is considered as an example of vertical pipelines. Factor analysis has been conducted which has great influence on the pipeline behavior. Three case studies are investigated which have the different pillar widths and gas well locations in pillar. For example, where overburden depth is 237.5 m and thickness of coal seam is 2.5 m, chain pillar of 45.8 m width in the 3-entry longwall system is proved to maintain safely the outer casing of gas welt which is made of API-55 steel, 10$\frac{3}{4}$ in. diameter and 0.4 in. thickness. Finally an active gas well which was broken by longwall mining is analyzed, where the induced shear stress turn out to exceed the allowable stress of steel.

  • PDF

Economical aessesment of long tunnel route complex geological formations (복잡한 지질구조암반층에서의 장대터널노선 선정을 위한 경제성 평가에 대한 연구)

  • Kim, Sang-Hwan;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.239-247
    • /
    • 2005
  • A new railway line of about 17km length was planned between Dongbaeksan and the neighboring town Dokye to improve the existing decrepit railway system. New line about 17km of the distance will almost be in circular alignment tunnels owing to the difference of elevation about 380m. Since the geology of the area is rather unusual compared to the normal in South Korea, extensive geological investigations have been carried out to prepare geological maps and profiles along the planned tunnel routes. The tunnel will almost be in sedimentary rock formations, such as limestone, sandstone, shale, coal etc and be near abandoned mines Various rock formations have the complicated, alter ed those rocks, but are well developed with laminated formations. Each rock formations have been classified using the Q-system and the cost of tunnel excavation, support has been estimated and compared for three alternative routes in the design stage. Based on these estimates, the final route of t he railway line was chosen.

  • PDF

Construction Planning and Design of a Long Tunnel (장대 터널의 계획과 설계)

  • 장석부;윤영훈;김용일;김진한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.117-124
    • /
    • 2000
  • This paper presents the construction planning and the detail design of a 16.2 km long railroad tunnel in a mountainous area. Major design conditions for railroad are the single track, loop-typed alinement, and a maximum grade of 24.5$\textperthousand$. A underground station(double track) with a length of 1.1km is located in the middle of the line for train cross-passing. Tunnel is excavated in highly complex geological conditions including faulted areas, abandoned mine works areas, and various rock types such as sandstone, shale, limestone, and coal seam partly. Drilling and blasting method was adopted because it is more flexible than TBM(Tunnel Boring Machine) as a result of risk assessment for geological conditions in this area. Two working adits were planned to adjust the construction schedule and can be used for ventilation and maintenance in operation phase. New material and concept were introduced to the tunnel drain design. They are expected to improve tunnel drain condition and capability. Rational tunnel support design was tried to consider the various tunnel size and purpose and to use the geological investigation results.

  • PDF

Damage Conditions and Assessment for Cut Slope Structures due to Acid Rock Drainage (산성암반배수에 의한 절취사면 구조물의 피해 현황과 평가)

  • Lee Gyoo Ho;Kim Jae Gon;Park Sam-Gyu;Lee Jin-Soo;Chon Chul-Min;Kim Tack Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.83-92
    • /
    • 2005
  • The aim of this study was to investigate damage conditions of cut slope structures due to acid rock drainage (ARB) and to assess the acid production potential of various rocks. Acid rock drainage is produced by the oxidation of sulfide minerals contained in coal mine zone and mineralization belt of Pyeongan supergroup and Ogcheon group, pyrite-bearing andesite, and Tertiary acid sulfate soils in Korea. Most of cut slopes producing ARB have been treated with shotcrete to reduce ARD. According to the field observations, ARD had an adverse effect on slope structures. The corrosion of shotcrete, anchors and rock bolts and the bad germination and growth diseases of covering plants due to ARD were observed in the field. The concentration of heavy metals and pH of ARD from cut slope exceeded the environmental standard, indicating a high potential of environmental pollution of surrounding soil, surface water and ground water by the ARD. According to acid base accounting (ABA) of the studied samples, hydrothermally altered volcanic rocks, tuffs, coaly shales, tailings of metallic mine had a relatively high potential of acid production but gneiss and granite had no or less acid production potential. It is expected that the number of cut slopes will increase hereafter considering the present construction trend. In order to reduce the adverse effect of ARD in construction sites, we need to secure the data base for potential ARD producing area and to develop the ARD reduction technologies suitable.

Study on the principle factors related to ground subsidence at Abandoned Underground Coal Mine Area using probability and sensitivity analysis (확률기법과 민감도 분석을 이용한 폐탄광지역의 지반침하 관련요인 고찰)

  • Ahn, Seung-Chan;Kim, Ki-Dong
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.296-300
    • /
    • 2007
  • 본 연구에서는 강원도 정선지역 및 삼척지역의 폐탄광 지역에서 관측된 지반침하지역의 공간자료와 각종 지반침하 관련요인을 분석하여, 지질학적구조와 지역적 특성이 상이한 지역에서 지반침하에 직접적인 영향을 주는 공통요인을 찾아내고자 하였다. 연구지역의 지반침하 관련요인들에 대해 GIS(Geographic Information System)를 이용하여 래스터 데이터베이스를 구축하고 모든 요인을 이용하여 분석한 위험지역과 하나의 요인씩 제거하며 분석한 위험지역을 비교하는 민감도 분석 (Sensitivity analysis)을 통해 지반침하와 연관성이 높은 요인을 추출하였다. 민감도 분석은 서로 다른 두 지역에 대해 수행하여 그 결과를 비교하였으며, 갱으로부터의 수평거리,RMR(Rock Mass Rating), 지하수 심도가 지반침하에 영향을 주는 공통요인으로 분석되었다. 본 연구결과, 폐탄광지역의 지반침하에 공통적으로 영향을 끼치는 주 요인을 구할 수 있었으며, 타 지역에서 지반침하 예측시 기존 연구에서 사용한 요인들의 데이터를 전부 구하지 못하는 경우에도 최소한의 필요한 요인을 정할 수 있으며 지반침하 예측의 효율성을 높일 수 있을 것이라 기대된다.

  • PDF

Rapid Screening of Naturally Occurring Radioactive Nuclides (238U, 232Th) in Raw Materials and By-Products Samples Using XRF

  • Park, Ji-Young;Lim, Jong-Myoung;Ji, Young-Yong;Lim, Chung-Sup;Jang, Byung-Uck;Chung, Kun Ho;Lee, Wanno;Kang, Mun-Ja
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.359-367
    • /
    • 2016
  • Background: As new legislation has come into force implementing radiation safety management for the use of naturally occurring radioactive materials (NORM), it is necessary to establish a rapid and accurate measurement technique. Measurement of $^{238}U$ and $^{232}Th$ using conventional methods encounter the most significant difficulties for pretreatment (e.g., purification, speciation, and dilution/enrichment) or require time-consuming processes. Therefore, in this study, the applicability of ED-XRF as a non-destructive and rapid screening method was validated for raw materials and by-product samples. Materials and Methods: A series of experiments was conducted to test the applicability for rapid screening of XRF measurement to determine activity of $^{238}U$ and $^{232}Th$ based on certified reference materials (e.g., soil, rock, phosphorus rock, bauxite, zircon, and coal ash) and NORM samples commercially used in Korea. Statistical methods were used to compare the analytical results of ED-XRF to those of certified values of certified reference materials (CRM) and inductively coupled plasma mass spectrometry (ICP-MS). Results and Discussion: Results of the XRF measurement for $^{238}U$ and $^{232}Th$ showed under 20% relative error and standard deviation. The results of the U-test were statistically significant except for the case of U in coal fly ash samples. In addition, analytical results of $^{238}U$ and $^{232}Th$ in the raw material and by-product samples using XRF and the analytical results of those using ICP-MS ($R^2{\geq}0.95$) were consistent with each other. Thus, the analytical results rapidly derived using ED-XRF were fairly reliable. Conclusion: Based on the validation results, it can be concluded that the ED-XRF analysis may be applied to rapid screening of radioactivities ($^{238}U$ and $^{232}Th$) in NORM samples.

Consideration of Changed Attitude of Discontinuity through the Depth -Example at Honam Coal Field and Around Suwon Area- (심도에 따른 불연속면의 형태 변화에 대한 고찰 -호남탄전과 수원인근 지역을 예로 하여-)

  • Lee, Byung-Joo;Choon, Sun-Woo
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.159-166
    • /
    • 2008
  • We have a question about the changing possibility of orientation of discontinuities through the depth of under-ground. To know this, the data from Honam coalfield composed of shale, sandstone and coal and Suwon area which crops out mica schist, were analyzed the discontinuities measured by BIPS and Televiewer. In Honam coalfield the orientations of joints are changed at 30-40 m depth of underground and in Suwon area they are changed around 20 m depth. To compared the results from Honanam coalfield and Suwon area, there are different rock type and geologic structure. However, the attitude of the discontinuities are changing at 20-30 m depth of underground.