• Title/Summary/Keyword: co-word network analysis

Search Result 92, Processing Time 0.025 seconds

Analysis on Topics of Digital Preservation Researches and Courses (디지털 보존 관련 학술연구 및 교과 주제분석)

  • Jeong, Uiyeon;Choi, Sanghee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.3
    • /
    • pp.25-43
    • /
    • 2019
  • Recently there has been a growing interest in digital preservation and digital curation with rapid increase of digital resource. This study aims to investigate the research topics and the course topics related digital preservation and digital curation. The course information is collected from the curricular of library and information science departments and archival science departments in leading countries such as US, England, Ireland, Canada and New Zealand. Title keyword profiling and network analysis were adapted to discover core research and education areas. The key topics in the abstracts of research papers and the contents of the course were also illustrated by these methods. In the research analysis, archival system is the biggest area of researches related digital preservation and digital curation. Courser analysis shows digital curation education and process is the important area of education. As a result of content analysis, plan and strategy is a notable topic of research and record management process is a major topic of courses for digital preservation and digital curation. In addition, format of digital resource is an important topic for research and courses.

An Investigation on Intellectual Structure of Social Sciences Research by Analysing the Publications of ICPSR Data Reuse (ICPSR 데이터 재이용 저작물 분석을 통한 사회과학 분야의 지적구조 분석)

  • Chung, EunKyung
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.52 no.1
    • /
    • pp.341-357
    • /
    • 2018
  • Due to the paradigm of open science and advanced digital information technology, data sharing and re-use have been actively conducted and considered data-intensive in a wide variety of disciplines. This study aims to investigate the intellectual structure portrayed by the research products re-using the data sets from ICPSR. For the purpose of this study, a total of 570 research products published in 2017 from the ICPSR site were collected and analyzed in two folds. First, the authors and publications of those research products were analyzed in order to show the trends of research using ICPSR data. Authors tend to be affiliated with university or research institute in the United States. The subject areas of journals are recognized into Social Sciences, Health, and Psychology. In addition, a network with clustering analysis was conducted with using co-word occurrence from the titles of the research products. The results show that there are 12 clusters, mental health, tabocco effect, disorder in school, childhood, and adolescence, sexual risk, child injuries, physical activity, violent behavior, survey, family role, women, problem behavior, gender differences in research areas. The structure portrayed by ICPSR data re-uses demonstrates that substantial number of studies in Medicine have been conducted with a perspective of social sciences.

The Study on Recent Research Trend in Korean Tourism Using Keyword Network Analysis (키워드 네트워크를 이용한 국내 관광연구의 최근 연구동향 분석)

  • Kim, Min Sun;Um, Hyemi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.68-73
    • /
    • 2016
  • This study was conducted to identify trends and knowledge structures associated with recent trends in Korean tourism from 2010 to 2015 using keyword data. To accomplish this, we constructed a network using keywords extracted from KCI journals. We then made a matrix describing the relationships between rows as papers and columns as keywords. A keyword network showed the connectivity of papers that have included one or more of the same keywords. Major keywords were then extracted using the cosine similarity between co-occurring keywords and components were analyzed to understand research trends and knowledge structure. The results revealed that subjects of tourism research have changed rapidly and variously. A few topics related to 'organization-employee' were major trends for several years, but intrinsic and extrinsic factors have been further subdivided and employees of specific fields have been targeted as subjects of research. Component analysis is useful for analyzing concrete research topics and the relationships between them. The results of this study will be useful for researchers attempting to identify new topics.

Time Series Analysis of Intellectual Structure and Research Trend Changes in the Field of Library and Information Science: 2003 to 2017 (문헌정보학 분야의 지적구조 및 연구 동향 변화에 대한 시계열 분석: 2003년부터 2017년까지)

  • Choi, Hyung Wook;Choi, Ye-Jin;Nam, So-Yeon
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.2
    • /
    • pp.89-114
    • /
    • 2018
  • Research on changes in research trends in academic disciplines is a method that enables observation of not only the detailed research subject and structure of the field but also the state of change in the flow of time. Therefore, in this study, in order to observe the changes of research trend in library and information science field in Korea, co-word analysis was conducted with Korean author keywords from three types of journals which were listed in the Korea Citation Index(KCI) and have top citation impact factor were selected. For the time series analysis, the 15-year research period was accumulated in 5-years units, and divided into 2003~2007, 2003~2012, and 2003~2017. The keywords which limited to the frequency of appearance 10 or more, respectively, were analyzed and visualized. As a result of the analysis, during the period from 2003 to 2007, the intellectual structure composed with 25 keywords and 8 areas was confirmed, and during the period from 2003 to 2012, the structure composed by 3 areas 17 sub-areas with 76 keywords was confirmed. Also, the intellectual structure during the period from 2003 to 2017 was crowded into 6 areas 32 consisting of a total of 132 keywords. As a result of comprehensive period analysis, in the field of library and information science in Korea, over the past 15 years, new keywords have been added for each period, and detailed topics have also been subdivided and gradually segmented and expanded.

An Informetric Analysis of Topics in University's General Education (대학 교양교육 주제영역의 계량적 분석연구)

  • Choi, Sanghee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.26 no.4
    • /
    • pp.245-262
    • /
    • 2015
  • As the topics of general education in universities become more diverse, it is not an easy task to identify the topics of general education courses. This study aims to identify and visualize the topics of A university's general education courses using informetric analysis methods. 214 syllabi were collected and titles, course introduction, goals, and weekly plans were analyzed. 278 topic words were extracted from the data set and grouped into 8 clusters. In the network analysis, topic clusters were divided into two areas, personal and social. Personal area has 14 sub-topic clusters and social area has 11 sub-topic clusters. In personal area, 'language', 'science', and 'personality' were major topic clusters. In social area, 'multi-culture' cluster was the core cluster with connected to four other clusters. The topic network generated in this study can be used for the university and the university library to enhance general education or to develop collections for general education.

An Analysis of Changes in Social Issues Related to Patient Safety Using Topic Modeling and Word Co-occurrence Analysis (토픽 모델링과 동시출현 단어 분석을 활용한 환자안전 관련 사회적 이슈의 변화)

  • Kim, Nari;Lee, Nam-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.92-104
    • /
    • 2021
  • This study aims to analyze online news articles to identify social issues related to patient safety and compare the changes in these issues before and after the implementation of the Patient Safety Act. This study performed text mining through the R program, wherein 7,600 online news articles were collected from January 1, 2010, to March 5, 2020, and examined using keyword analysis, topic modeling, and word co-occurrence network analysis. A total of 2,609 keywords were categorized into 8 topics: "medical practice", "medical personnel", "infection and facilities", "comprehensive nursing service", "medicine and medical supplies", "system development and establishment for improvement", "Patient Safety Act" and "healthcare accreditation". The study revealed that keywords such as "patient safety awareness", "infection control" and "healthcare accreditation" appeared before the implementation of the Patient Safety Act. Meanwhile, keywords such as "patient safety culture". and "administration and injection" appeared after the act's implementation with improved ranking of importance pertaining to nursing-related terminology. Interest in patient safety has increased in the medical community as well as among the public. In particular, nursing plays an important role in improving patient safety. Therefore, the recognition of patient safety as a core competency of nursing and the persistent education of the public are vital and inevitable.

An Investigation on Characteristics and Intellectual Structure of Sociology by Analyzing Cited Data (사회학 분야의 연구데이터 특성과 지적구조 규명에 관한 연구)

  • Choi, Hyung Wook;Chung, EunKyung
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.3
    • /
    • pp.109-124
    • /
    • 2017
  • Through a wide variety of disciplines, practices on data access and re-use have been increased recently. In fact, there has been an emerging phenomenon that researchers tend to use the data sets produced by other researchers and give scholarly credit as citation. With respect to this practice, in 2012, Thomson Reuters launched Data Citation Index (DCI). With the DCI, citation to research data published by researchers are collected and analyzed in a similar way for citation to journal articles. The purpose of this study is to identify the characteristics and intellectual structure of sociology field based on research data, which is one of actively data-citing fields. To accomplish this purpose, two data sets were collected and analyzed. First, from DCI, a total of 8,365 data were collected in the field of sociology. Second, a total of 12,132 data were collected from Web of Science with a topic search with 'Sociology'. As a result of the co-word analysis of author provided-keywords for both data sets, the intellectual structure of research data-based sociology was composed of two areas and 15 clusters and that of article-based sociology was composed with three areas and 17 clusters. More importantly, medical science area was found to be actively studied in research data-based sociology and public health and psychology are identified to be central areas from data citation.

A Study on Recent Research Trend in Management of Technology Using Keywords Network Analysis (키워드 네트워크 분석을 통해 살펴본 기술경영의 최근 연구동향)

  • Kho, Jaechang;Cho, Kuentae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.101-123
    • /
    • 2013
  • Recently due to the advancements of science and information technology, the socio-economic business areas are changing from the industrial economy to a knowledge economy. Furthermore, companies need to do creation of new value through continuous innovation, development of core competencies and technologies, and technological convergence. Therefore, the identification of major trends in technology research and the interdisciplinary knowledge-based prediction of integrated technologies and promising techniques are required for firms to gain and sustain competitive advantage and future growth engines. The aim of this paper is to understand the recent research trend in management of technology (MOT) and to foresee promising technologies with deep knowledge for both technology and business. Furthermore, this study intends to give a clear way to find new technical value for constant innovation and to capture core technology and technology convergence. Bibliometrics is a metrical analysis to understand literature's characteristics. Traditional bibliometrics has its limitation not to understand relationship between trend in technology management and technology itself, since it focuses on quantitative indices such as quotation frequency. To overcome this issue, the network focused bibliometrics has been used instead of traditional one. The network focused bibliometrics mainly uses "Co-citation" and "Co-word" analysis. In this study, a keywords network analysis, one of social network analysis, is performed to analyze recent research trend in MOT. For the analysis, we collected keywords from research papers published in international journals related MOT between 2002 and 2011, constructed a keyword network, and then conducted the keywords network analysis. Over the past 40 years, the studies in social network have attempted to understand the social interactions through the network structure represented by connection patterns. In other words, social network analysis has been used to explain the structures and behaviors of various social formations such as teams, organizations, and industries. In general, the social network analysis uses data as a form of matrix. In our context, the matrix depicts the relations between rows as papers and columns as keywords, where the relations are represented as binary. Even though there are no direct relations between papers who have been published, the relations between papers can be derived artificially as in the paper-keyword matrix, in which each cell has 1 for including or 0 for not including. For example, a keywords network can be configured in a way to connect the papers which have included one or more same keywords. After constructing a keywords network, we analyzed frequency of keywords, structural characteristics of keywords network, preferential attachment and growth of new keywords, component, and centrality. The results of this study are as follows. First, a paper has 4.574 keywords on the average. 90% of keywords were used three or less times for past 10 years and about 75% of keywords appeared only one time. Second, the keyword network in MOT is a small world network and a scale free network in which a small number of keywords have a tendency to become a monopoly. Third, the gap between the rich (with more edges) and the poor (with fewer edges) in the network is getting bigger as time goes on. Fourth, most of newly entering keywords become poor nodes within about 2~3 years. Finally, keywords with high degree centrality, betweenness centrality, and closeness centrality are "Innovation," "R&D," "Patent," "Forecast," "Technology transfer," "Technology," and "SME". The results of analysis will help researchers identify major trends in MOT research and then seek a new research topic. We hope that the result of the analysis will help researchers of MOT identify major trends in technology research, and utilize as useful reference information when they seek consilience with other fields of study and select a new research topic.

Introducing Keyword Bibliographic Coupling Analysis (KBCA) for Identifying the Intellectual Structure (지적구조 규명을 위한 키워드서지결합분석 기법에 관한 연구)

  • Lee, Jae Yun;Chung, EunKyung
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.1
    • /
    • pp.309-330
    • /
    • 2022
  • Intellectual structure analysis, which quantitatively identifies the structure, characteristics, and sub-domains of fields, has rapidly increased in recent years. Analysis techniques traditionally used to conduct intellectual structure analysis research include bibliographic coupling analysis, co-citation analysis, co-occurrence analysis, and author bibliographic coupling analysis. This study proposes a novel intellectual structure analysis method, Keyword Bibliographic Coupling Analysis (KBCA). The Keyword Bibliographic Coupling Analysis (KBCA) is a variation of the author bibliographic coupling analysis, which targets keywords instead of authors. It calculates the number of references shared by two keywords to the degree of coupling between the two keywords. A set of 1,366 articles in the field of 'Open Data' searched in the Web of Science were collected using the proposed KBCA technique. A total of 63 keywords that appeared more than 7 times, extracted from 1,366 article sets, were selected as core keywords in the open data field. The intellectual structure presented by the KBCA technique with 63 key keywords identified the main areas of open government and open science and 10 sub-areas. On the other hand, the intellectual structure network of co-occurrence word analysis was found to be insufficient in the overall structure and detailed domain structure. This result can be considered because the KBCA sufficiently measures the relationship between keywords using the degree of bibliographic coupling.

A Study on the Intellectual Structure of Domestic Open Access Area (국내 오픈액세스 분야의 지적구조 분석에 관한 연구)

  • Shin, Jueun;Kim, Seonghee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.55 no.2
    • /
    • pp.147-178
    • /
    • 2021
  • In this study, co-word analysis was conducted to investigate the intellectual structure of the domestic open access area. Through KCI and RISS, 124 research articles related to open access in Korea were selected for analysis, and a total of 1,157 keywords were extracted from the title and abstract. Network analysis was performed on the selected keywords. As a result, 3 domains and 20 clusters were extracted, and intellectual relations among keywords from open access area were visualized through PFnet. The centrality analysis of weighted networks was used to identify the core keywords in this area. Finally, 5 clusters from cluster analysis were displayed on a multidimensional scaling map, and the intellectual structure was proposed based on the correlation between keywords. The results of this study can visually identify and can be used as basic data for predicting the future direction of open access research in Korea.