• Title/Summary/Keyword: co-rotation

Search Result 364, Processing Time 0.034 seconds

Development of Hip Joint Simulator to Evaluate The Wear of Biomaterials Used in Total Hip Joint Replacement (인공고관절 생체재료 마멸평가를 위한 시뮬레이터 개발)

  • 이권용;윤재웅;전승범;박성길
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.265-270
    • /
    • 2001
  • Hip joint simulator which Is an essential device for evaluating the wear of biomaterials (ultrahigh molecular weight polyethylene, Co-Cr alloy, alumina, etc.) used in total hip joint replacement was developed. This hip joint simulator mimics the joint motion and joint loading of human gait by adapting the 4 degree of freedom in kinematic motion (flexing/extension, adduction/abduction, Internal rotation/external rotation) and axial loading, Four stations are operated by 8 servo-motors and harmony drives. Joint leading was imposed by displacement control from a ball screw, LM guide, and spring system. Each kinematic link system operates separately or coupled modes. A heater and a thermocouple were installed for keeping the body temperature in each station.

  • PDF

Extended Kalman Filter Based GF-INS Angular Velocity Estimation Algorithm

  • Kim, Heyone;Lee, Junhak;Oh, Sang Heon;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.3
    • /
    • pp.107-117
    • /
    • 2019
  • When a vehicle moves with a high rotation rate, it is not easy to measure the angular velocity using an off-the-shelf gyroscope. If the angular velocity is estimated using the extended Kalman filter in the gyro-free inertial navigation system, the effect of the accelerometer error and initial angular velocity error can be reduced. In this paper, in order to improve the navigation performance of the gyro-free inertial navigation system, an angular velocity estimation method is proposed based on an extended Kalman filter with an accelerometer random bias error model. In order to show the validity of the proposed estimation method, angular velocities and navigation outputs of a vehicle with 3 rev/s rotation rate are estimated. The results are compared with estimates by other methods such as the integration and an extended Kalman filter without an accelerometer random bias error model. The proposed method gives better estimation results than other methods.

Construction Vehicle Collision Warning System (공사 차량 충돌 경고 시스템)

  • Shin, Seong-Yoon;Cho, Gwang-Hyun;Cho, Seung-Pyo;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.414-415
    • /
    • 2022
  • In this paper, we are going to develop a collision accident prevention technology that automatically recognizes more than 98% of workers and obstacles in 360° around them during work/high-speed movement/cabin rotation, guides collision warning and secures the driver's viewing angle.

  • PDF

Accumulated Rotations of Suction Bucket Foundations under Long-term Cyclic Loads in Dry Sandy Ground (건조 사질토 지반에 설치된 석션 버켓기초의 장기 반복하중에 의한 누적회전각 산정)

  • Lee, Si-Hoon;Choi, Changho;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.69-78
    • /
    • 2016
  • A suction bucket foundation has been considered to be a potential foundation type for offshore wind turbines. A suction bucket foundation is usually installed in soft soil, so the accumulated displacement of the foundation may occur under long-term cyclic loads. In this study, a series of 1-g model tests were performed to analyze the accumulated rotation of suction bucket foundations under long-term cyclic horizontal loads. The dry model ground was prepared to have two different soil densities by air-pluviation method. The model tests were performed varying the embedment depth of the suction bucket, the soil density, and the amplitude of cyclic load. A one-way horizontal cyclic load was applied over $10^4$ cycles. Test results showed that the accumulated rotation of the suction bucket foundation increased with the increase in the number of cycles and load magnitudes. Based on the model test results, a new equation was proposed to evaluate the accumulated rotation of the suction bucket foundations in dry sandy ground under long-term cyclic horizontal loads.

Development of Nonlinear Triangular Planar Element Based on Co-rotational Framework (Co-rotational 이론 기반 비선형 삼각평면 유한요소의 개발)

  • Cho, Hae-Seong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.485-490
    • /
    • 2015
  • This paper presents development of a geometrically nonlinear triangular planar element including rotational degrees of freedom, based on the co-rotational(CR) formulation. The CR formulation is one of the efficient geometrically nonlinear formulations and it is based on the assumptions on small strain and large rotation. In this paper, modified CR formulation is suggested for the developemnt of a triangular planar element. The present development is validated regarding the static and time transient problems. The present results are compared with the results predicted by the previous researchers and those obtained by the existing commercial software.

Observations of surface roughness of Co-Cr alloys according to grinding time of dental barrel finishing (치과용 바렐연마기의 연마시간에 따른 Co-Cr 합금의 표면거칠기 관찰)

  • Ko, Hyeon-Jeong;Park, Yu-Jin;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.43 no.3
    • /
    • pp.93-98
    • /
    • 2021
  • Purpose: The aim of this study was to observe the surface roughness and surface topography of cobalt-chrome (Co-Cr) alloys with grinding time in dental barrel finishing. Methods: This study involved two types of Co-Cr alloys. Specimens were manufactured with the dimensions 10×10×2 mm. Each specimen was cast according to the manufacturer's instructions. The cast alloys were polished for 35 minutes at intervals of five minutes in an automatic barrel finishing. Specimens were imaged with a three-dimensional optical microscope to measure surface roughness. Results: BC specimens and GM specimens had the highest roughness (Ra) values in the ungrained control group, and the lowest Ra values were measured 20 minutes after grinding. Conclusion: The best conditions for grinding Co-Cr alloy using a dental barrel finishing were a weight ratio of polishing media, water, and compound of 150 g:200 g:5 g, and a rotation speed of 450 rpm. Grinding time to obtain appropriate surface roughness should be limited to 15 to 30 minutes.

Perturbation in the Earth's Pole due to the Recent 31 Large Earthquakes of Magnitude over 8.0

  • Na, Sung-Ho;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.37 no.5
    • /
    • pp.271-276
    • /
    • 2016
  • We present our estimate of pole shift caused by the recent 31 largest earthquakes of magnitude over 8.0. After reviewing theory of perturbation in the Earth's rotation, each co-seismic as well as post-seismic pole shifts by the earthquakes are acquired and illustrated. A total co-seismic excitation due to these earthquakes is ($x_1$, $x_2$)=(-3.35, 5.89) milliarcsec, which increased about twice the initial estimation when the post-seismic deformation is considered. The single largest co-seismic excitation by 2011 Japan earthquake was ($x_1$, $x_2$)=(-2.06, 2.36) milliarcsec, which corresponds to 9.7 cm pole shift on the surface of the Earth.

Vibration Analysis of a Rotor considering Nonlinear Reaction of Hydrodynamic Bearing

  • Lee, Soo-Mok;Lim, Do-Hyeong;Bae, Jong-Gug;Yang, Bo-Suk
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.254-259
    • /
    • 2009
  • In this paper it was attempted to treat the hydrodynamic journal bearing as a time-based nonlinear reaction source in each step of rotor rotation in order to observe the bearing effect more realistically and accurately in stead of the conventional method of simple linearized stiffness and damping. Lubrication analysis based on finite element method is employed to calculate the hydrodynamic reaction of bearing and Newmark's method was used to calculate the rotor dynamics in the time domain. Simulation for an industrial electrical motor showed remarkable results with differences compared to those by the conventional method in the dynamic behavior of the rotor.

A study on Design and Kinematics Analysis of Robot Hand Fingers (로봇핸드 핑거의 설계 및 운동학적 해석에 관한 연구)

  • Won, Jong-Bum;Ha, Eon-Tae;Kim, Byung-Chang;Cho, Sang-yeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.231-240
    • /
    • 2015
  • In this paper, it was presented to design and analyze the kinematics of grasping a rigid object by means of multi-degrees-of-freedom hand fingers. It is shown firstly that a set of kinematic equation describing dynamics system of the arm and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. It has been presented secondly that the problems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. In this research, the control method for static stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation that the control system gives the performance improvement in the kinematic grasping of the hand fingers of robot.

Kinematics of the Envelope and Two Bipolar Jets in L1157

  • Kwon, Woojin;Fernandez-Lopez, Manuel;Stephens, Ian W.;Looney, Leslie W.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.72.3-72.3
    • /
    • 2016
  • A massive envelope and a strong bipolar outflow are the two most distinct structures of youngest protostellar systems. We present observational results from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) toward the youngest (Class 0) protostellar system L1157. At an angular resolution of 5 arcseconds, we mapped its well-developed outflow in CO 2-1 over a span of approximately 5 arcminutes. Additionally, we imaged the central envelope with CO isotopes, CS, CN, and N2H+ with an angular resolution of about 2 arcseconds. We show that the bipolar outflow may be represented with a two jet model and constrain its physical properties such as precession/rotation directions, velocities, inclinations, and position angles via cube data fitting. In addition, we discuss the kinematic features of the envelope detected in CO isotopes and N2H+ and present the radius-dependent dust opacity spectral index.

  • PDF