• Title/Summary/Keyword: co-occurrence words

Search Result 74, Processing Time 0.024 seconds

Foreign Tourists' Experience Structure Visiting Cultural Tourism Resources in Jeju using Co-occurrence Network Analysis: Focused on Online Review and Grade of Global OTA (Co-occurrence 네트워크 분석을 활용한 외국인 관광객의 제주 문화관광자원 경험구조: 글로벌 OTA의 온라인 리뷰 및 평점을 대상으로)

  • Hee-Jeong Yun
    • Asia-Pacific Journal of Business
    • /
    • v.15 no.1
    • /
    • pp.273-287
    • /
    • 2024
  • Purpose - This study conducts the co-occurrence analysis, one of the social network analysis using global OTA's online reviews and grades in order to understand the experience structure of foreign tourists visiting cutural tourism resources in Jeju, Korea. Design/methodology/approach - For this purpose, this study selects 6 cultural tourism resources in Jeju as the study sites, and collects qualitative review data (noun, adjectives, and verb) and quantitative grade data. Findings - The co-occurrence network analysis between words and grade of market and street shows that the grade of 5 appears the most simultaneous with pork, buy, lot, try, fresh, black, food, price, seafood, local, market, good, street, etc. and the grade of 1 connects with small, dish, better, taste, etc. And the co-occurrence network analysis between words and grade of tradition and folklore shows that the grade of 5 appears the most simultaneous with village, place, museum, visit, time, life, culture, women, diver, use, lot, etc. and the grade of 1 connects with minute, spend, room, recommend, honey, etc. Research implications or originality - The above research results are relevant in order to find out the core experience of foreign tourists using online review and grade generated by foreign tourists and use as the important information to develop the strategies related to the planning and management of cultural tourism resources.

Text Mining of Wood Science Research Published in Korean and Japanese Journals

  • Eun-Suk JANG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.458-469
    • /
    • 2023
  • Text mining techniques provide valuable insights into research information across various fields. In this study, text mining was used to identify research trends in wood science from 2012 to 2022, with a focus on representative journals published in Korea and Japan. Abstracts from Journal of the Korean Wood Science and Technology (JKWST, 785 articles) and Journal of Wood Science (JWS, 812 articles) obtained from the SCOPUS database were analyzed in terms of the word frequency (specifically, term frequency-inverse document frequency) and co-occurrence network analysis. Both journals showed a significant occurrence of words related to the physical and mechanical properties of wood. Furthermore, words related to wood species native to each country and their respective timber industries frequently appeared in both journals. CLT was a common keyword in engineering wood materials in Korea and Japan. In addition, the keywords "MDF," "MUF," and "GFRP" were ranked in the top 50 in Korea. Research on wood anatomy was inferred to be more active in Japan than in Korea. Co-occurrence network analysis showed that words related to the physical and structural characteristics of wood were organically related to wood materials.

A Study for the Generation of the Lightweight Ontologies (경량 온톨로지 생성 연구)

  • Han, Dong-Il;Kwon, Hyeong-In;Baek, Sun-Kyoung
    • Journal of Information Technology Services
    • /
    • v.8 no.1
    • /
    • pp.203-215
    • /
    • 2009
  • This paper illustrates the application of co-occurrence theory to generate lightweight ontologies semi-automatically. The proposed model includes three steps of a (Semi-) Automatic creation of Ontology; (they are conceptually named as) the Syntactic-based Ontology, the Semantic-based Ontology and the Ontology Refinement. Each of these three steps are designed to interactively work together, so as to generate Lightweight Ontologies. The Syntactic-based Ontology step includes generating Association words using co-occurrence in web documents. The Semantic-based Ontology step includes the Alignment large Association words with small Ontology, through the process of semantic relations by contextual terms. Finally, the Ontology Refinement step includes the domain expert to refine the lightweight Ontologies. We also conducted a case study to generate lightweight ontologies in specific domains(news domain). In this paper, we found two directions including (1) employment co-occurrence theory to generate Syntactic-based Ontology automatically and (2) Alignment large Association words with small Ontology to generate lightweight ontologies semi-automatically. So far as the design and the generation of big Ontology is concerned, the proposed research will offer useful implications to the researchers and practitioners so as to improve the research level to the commercial use.

Intellectual Structure of the Altmetrics field: A Co-Word Analysis (Co-word를 이용한 알트메트리얼 필리트의 지적 구조 연구)

  • Li, Jiapei;Li, Xiaomeng;Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.148-150
    • /
    • 2017
  • In recent years, "altmetrics", given birth by social media and the academic community, have become a metric source for measuring the academic impact of scientific literature. This study has undertaken a co-word analysis of author keywords in "Altmetrics" articles from the Web of Science database from 2012 to 2017 and used a co-occurrence matrix to create a clustering of the words. "Altmetrics" co-occurrence network map was derived and the research hotspots was analyzed.

  • PDF

Exploring Teaching Method for Productive Knowledge of Scientific Concept Words through Science Textbook Quantitative Analysis (과학교과서 텍스트의 계량적 분석을 이용한 과학 개념어의 생산적 지식 교육 방안 탐색)

  • Yun, Eunjeong
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.41-50
    • /
    • 2020
  • Looking at the understanding of scientific concepts from a linguistic perspective, it is very important for students to develop a deep and sophisticated understanding of words used in scientific concept as well as the ability to use them correctly. This study intends to provide the basis for productive knowledge education of scientific words by noting that the foundation of productive knowledge teaching on scientific words is not well established, and by exploring ways to teach the relationship among words that constitute scientific concept in a productive and effective manner. To this end, we extracted the relationship among the words that make up the scientific concept from the text of science textbook by using quantitative text analysis methods, second, qualitatively examined the meaning of the word relationship extracted as a result of each method, and third, we proposed a writing activity method to help improve the productive knowledge of scientific concept words. We analyzed the text of the "Force and motion" unit on first grade science textbook by using four methods of quantitative linguistic analysis: word cluster, co-occurrence, text network analysis, and word-embedding. As results, this study suggests four writing activities, completing sentence activity by using the result of word cluster analysis, filling the blanks activity by using the result of co-occurrence analysis, material-oriented writing activities by using the result of text network analysis, and finally we made a list of important words by using the result of word embedding.

Research Trends Analysis on ESG Using Unsupervised Learning

  • Woo-Ryeong YANG;Hoe-Chang YANG
    • The Journal of Economics, Marketing and Management
    • /
    • v.11 no.3
    • /
    • pp.47-66
    • /
    • 2023
  • Purpose: The purpose of this study is to identify research trends related to ESG by domestic and overseas researchers so far, and to present research directions and clues for the possibility of applying ESG to Korean companies in the future and ESG practice through comparison of derived topics. Research design, data and methodology: In this study, as of October 20, 2022, after searching for the keyword 'ESG' in 'scienceON', 341 domestic papers with English abstracts and 1,173 overseas papers were extracted. For analysis, word frequency analysis, word co-occurrence frequency analysis, BERTopic, LDA, and OLS regression analysis were performed to confirm trends for each topic using Python 3.7. Results: As a result of word frequency analysis, It was found that words such as management, company, performance, and value were commonly used in both domestic and overseas papers. In domestic papers, words such as activity and responsibility, and in overseas papers, words such as sustainability, impact, and development were included in the top 20 words. As a result of analyzing the co-occurrence frequency of words, it was confirmed that domestic papers were related mainly to words such as company, management, and activity, and overseas papers were related to words such as investment, sustainability, and performance. As a result of topic modeling, 3 topics such as named ESG from the corporate perspective were derived for domestic papers, and a total of 7 topics such as named sustainable investment for overseas papers were derived. As a result of the annual trend analysis, each topic did not show a relatively increasing or decreasing tendency, confirming that all topics were neutral. Conclusions: The results of this study confirmed that although it is desirable that domestic papers have recently started research on consumers, the subject diversity is lower than that of overseas papers. Therefore, it is suggested that future research needs to approach various topics such as forecasting future risks related to ESG and corporate evaluation methods.

Empirical Comparison of Word Similarity Measures Based on Co-Occurrence, Context, and a Vector Space Model

  • Kadowaki, Natsuki;Kishida, Kazuaki
    • Journal of Information Science Theory and Practice
    • /
    • v.8 no.2
    • /
    • pp.6-17
    • /
    • 2020
  • Word similarity is often measured to enhance system performance in the information retrieval field and other related areas. This paper reports on an experimental comparison of values for word similarity measures that were computed based on 50 intentionally selected words from a Reuters corpus. There were three targets, including (1) co-occurrence-based similarity measures (for which a co-occurrence frequency is counted as the number of documents or sentences), (2) context-based distributional similarity measures obtained from a latent Dirichlet allocation (LDA), nonnegative matrix factorization (NMF), and Word2Vec algorithm, and (3) similarity measures computed from the tf-idf weights of each word according to a vector space model (VSM). Here, a Pearson correlation coefficient for a pair of VSM-based similarity measures and co-occurrence-based similarity measures according to the number of documents was highest. Group-average agglomerative hierarchical clustering was also applied to similarity matrices computed by individual measures. An evaluation of the cluster sets according to an answer set revealed that VSM- and LDA-based similarity measures performed best.

Analysis of Mission, Vision and Core values in Korean Tertiary General Hospitals Through Text Mining (텍스트 마이닝을 통한 상급종합병원의 미션, 비전, 핵심가치 분석 연구)

  • Ji-Hoon Lee
    • Korea Journal of Hospital Management
    • /
    • v.28 no.2
    • /
    • pp.32-43
    • /
    • 2023
  • Purposes: This research is conducted to identify main features and trends of mission, vision and core values in Korean tertiary general hospitals by using text-mining. Methodology: For the study, 45 mission, 112 vision and 190 core values are collected from 45 tertiary general hospitals' homepages in 2022 and use word frequency analysis and Leyword co-occurrence analysis. Findings: In the tertiary general hospitals' mission, there are high frequency words such as 'health', 'humanity', 'medical treatment', 'education', 'research', 'happiness', 'love', 'best', 'spirit', and mission mainly includes the content of contributing humanity's health and happiness with these words. In case of vision, high frequency words are 'hospital', 'medical treatment', 'research', 'lead', 'trust', 'centered', 'patient', 'best', 'future'. By using these words in vision, it represents the definition and characteristics of vision such as ideal organizations in the future, goals and targets. As a result of the Leyword co-occurrence analysis, vision includes the content of 'high-tech medical treatment', 'special care for patients', 'leading education and research', 'the highest trust with customer', 'creative talents training'. -astly, the high frequency word-pairs in core values are 'social distribution', 'innovation pursuit', 'cooperation and harmony', and it defines standards of behavior for organizations. Practical Implication: To correct the problems of vision, mission and core values from findings, firstly, it needs for Korean tertiary general hospitals to use the words that can explain organization's identity and differentiate others in their mission. Secondly, considering strengthening the role of hospitals in their community and the importance of members in organizations, it is necessary to establish vision with considering community and members to activate vision effectively. Thirdly, because there are no specific guidelines of establishing mission, vision and core values for healthcare organizations, this research concepts and results could be utilized when other organizations establish mission, vision and core values.

  • PDF

Automatic Keyword Extraction using Hierarchical Graph Model Based on Word Co-occurrences (단어 동시출현관계로 구축한 계층적 그래프 모델을 활용한 자동 키워드 추출 방법)

  • Song, KwangHo;Kim, Yoo-Sung
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.522-536
    • /
    • 2017
  • Keyword extraction can be utilized in text mining of massive documents for efficient extraction of subject or related words from the document. In this study, we proposed a hierarchical graph model based on the co-occurrence relationship, the intrinsic dependency relationship between words, and common sub-word in a single document. In addition, the enhanced TextRank algorithm that can reflect the influences of outgoing edges as well as those of incoming edges is proposed. Subsequently a novel keyword extraction scheme using the proposed hierarchical graph model and the enhanced TextRank algorithm is proposed to extract representative keywords from a single document. In the experiments, various evaluation methods were applied to the various subject documents in order to verify the accuracy and adaptability of the proposed scheme. As the results, the proposed scheme showed better performance than the previous schemes.

Exploring Depression Research Trends Using BERTopic and LDA

  • Woo-Ryeong, YANG;Hoe-Chang, YANG
    • The Korean Journal of Food & Health Convergence
    • /
    • v.9 no.1
    • /
    • pp.19-28
    • /
    • 2023
  • The purpose of this study is to explore which areas have been more interested in depression research in Korea through analysis of academic papers related to depression, and then to provide insights that can solve future depression problems. 1,032 papers searched with the keyword "depression" in scienceON were analyzed using Python 3.7 for word frequency analysis, word co-occurrence analysis, BERTopic, LDA, and OLS regression analysis. The results of word frequency and co-occurrence frequency analysis showed that related words were composed around words such as patient, disorder and symptom. As a result of topic modeling, a total of 13 topics including 'childhood depression' and 'eating anxiety' were derived. And it has been identified as a topic of interest that 'suicidal thoughts', 'treatment', 'occupational health', and 'health treatment program' were statistically significant topics, while 'child depression' and 'female treatment' were relatively less. As a result of the analysis of research trends, future research will not only study physiological and psychological factors but also social and environmental causes, as well as it was suggested that various collaborative studies of experts in academia were needed such as convergence and complex perspectives for depression relief and treatment.