DOI QR코드

DOI QR Code

Exploring Teaching Method for Productive Knowledge of Scientific Concept Words through Science Textbook Quantitative Analysis

과학교과서 텍스트의 계량적 분석을 이용한 과학 개념어의 생산적 지식 교육 방안 탐색

  • Yun, Eunjeong (Science Education Research Institute of Kyungpook National University)
  • 윤은정 (경북대학교 과학교육연구소)
  • Received : 2020.02.13
  • Accepted : 2020.02.24
  • Published : 2020.02.29

Abstract

Looking at the understanding of scientific concepts from a linguistic perspective, it is very important for students to develop a deep and sophisticated understanding of words used in scientific concept as well as the ability to use them correctly. This study intends to provide the basis for productive knowledge education of scientific words by noting that the foundation of productive knowledge teaching on scientific words is not well established, and by exploring ways to teach the relationship among words that constitute scientific concept in a productive and effective manner. To this end, we extracted the relationship among the words that make up the scientific concept from the text of science textbook by using quantitative text analysis methods, second, qualitatively examined the meaning of the word relationship extracted as a result of each method, and third, we proposed a writing activity method to help improve the productive knowledge of scientific concept words. We analyzed the text of the "Force and motion" unit on first grade science textbook by using four methods of quantitative linguistic analysis: word cluster, co-occurrence, text network analysis, and word-embedding. As results, this study suggests four writing activities, completing sentence activity by using the result of word cluster analysis, filling the blanks activity by using the result of co-occurrence analysis, material-oriented writing activities by using the result of text network analysis, and finally we made a list of important words by using the result of word embedding.

과학 개념에 대한 이해를 언어학적 관점에서 바라보면 학생들이 과학 개념어에 대한 깊고 정교한 이해와 더불어 정확하게 사용할 수 있는 능력을 길러주는 것이 매우 중요하다. 본 연구에서는 지금까지 과학 교육에서 과학 개념어에 대한 생산적 지식 교육의 기틀이 잘 마련되어 있지 않음에 주목하고, 과학 개념을 구성하고 있는 단어들 사이의 관계를 생산적이고 효과적으로 교육할 수 있는 방안을 탐색함으로써 과학 개념어의 생산적 지식 교육의 기틀을 제공하고자 하였다. 이를 위해 첫째, 몇 가지의 계량 언어학적 텍스트 분석 방법을 이용하여 과학 교과서 텍스트로 부터 과학 개념을 구성하고 있는 단어들과 그들 사이의 관계를 추출하고, 둘째, 각 방법의 결과로 추출된 단어 관계의 의미를 정성적으로 살펴본 뒤, 셋째, 이를 이용하여 과학 개념어의 생산적 지식 향상에 도움을 줄 수 있는 쓰기 활동 방법을 제안해 보았다. 중학교 1학년 과학교과서 '힘과 운동' 단원 텍스트를 클러스터 분석, 공기 빈도 분석, 텍스트 네트워크 분석, 그리고 워드임베딩의 네 가지 계량 언어학적 분석 방법을 사용하여 분석해 보았다. 연구 결과 첫째, 클러스터 분석 결과를 활용하여 문장 완성하기 활동을 제안하였다. 둘째, 공기 빈도 분석 결과를 이용한 빈 칸 채우기 활동을 제안하였다. 셋째, 네트워크 분석 결과를 이용하여 소재 중심 글쓰기 활동을 제안하였다. 넷째, 워드임베딩을 이용한 학습 중요 단어 목록 작성을 제안하였다.

Keywords

References

  1. Barcroft, J. (2004). Effects of sentence writing in second language lexical acquisition. Second Language Research, 20, 303-334. https://doi.org/10.1191/0267658304sr233oa
  2. Barnbrook, G. (1996). Language and computers, Edinburgh University Press.
  3. Biber, D., S. Johansson, G. Leech, S. Conrad, & E. Finegan. (1999). Longman Grammar of spoken and written English. London: Longman.
  4. Choi, S., Matteson, A. S., & Lim, H. (2018). Utilizing local bilingual embeddings on Korean-English law data. Journal of the Korea Convergence Society, 9(10), 45-53. https://doi.org/10.15207/JKCS.2018.9.10.045
  5. Evans, V., & Green, M. (2006). Cognitive linguistics: An introduction. Lawrence Erlbaum Associates Publishers.
  6. Folse, K. (2006). The effect of type of written exercise on L2 vocabulary retention. TESOL Quarterly, 40(2), 273-293. https://doi.org/10.2307/40264523
  7. Griffin, G. F., & Harely, T. A. (1996). List learning of second language vocabulary. Applied Psycholinguistics, 17(4), 443-460. https://doi.org/10.1017/S0142716400008195
  8. Halliday, M. A. K. (1993). Towards a language-based theory of learning. Linguistics and Education, 5, 93-116. https://doi.org/10.1016/0898-5898(93)90026-7
  9. Hulstijn, J., & Laufer, B. (2001). Some empirical evidence for the involvement load hypothesis in vocabulary acquisition. Language Learning, 51, 539-558. https://doi.org/10.1111/0023-8333.00164
  10. Jhang, S., & Lee, S. (2013). Clusters and key clusters in the Maritime English Corpus. Journal of Language Sciences, 20(4), 199-219.
  11. Kang, B. (2011). Language, computer, corpus linguistics. Korea University Press.
  12. Kim, J. & Im, H. (2012). The interaction effects of exposure frequency and task-induced involvement on English learners' vocabulary development. Foreign Languages Education, 19(4), 349-373.
  13. Kwon, H. (2008). The prictice and application of corpus linguistics. Korean Journal of Applied Linguistics, 24(3), 1-30.
  14. Laufer, B. (1998). The development of passíve and active vocabulary: Same or different? Applied Linguistics, 19(2), 255-271. https://doi.org/10.1093/applin/19.2.255
  15. Lee, I., & Kim, M. (2006). Multi-document summarization based on cluster using term co-occurrence. Journal of KIISE: Software and Applications, 33(2), 243-251.
  16. Lee, C. (1998). Basic study for development of Korean vocabulary teaching theory. Korean Language Education, 98, 75-103.
  17. Mikolove, T., Sutskever, I., Chen, K., Corrado, GS., & Dean, J. (2013a). Distributed representations of words and phrases and their compositionality. Neural Information Processing System, 26, 3111-3119.
  18. Nation, 1. S. P. (1990). Learning and teaching vocabulary. New York: Newbury House.
  19. Nattinger, J. (1988). Some current trends in vocabulary teaching. In R. Carter & M. McCarthy (Eds), Vocabulary and language teaching (pp. 62-82). London: Longman.
  20. Park, B. (2002). A study on Korean syntactic collocation. The Studies of Korean Language and Literature, 19, 333-351.
  21. Piaget, J. (1926). The language and thought of the child. Harcourt, Brace.
  22. Rincke, K. (2011). It's rather like learning a language: Development of talk and conceptual understanding in mechanics lessons. International Journal of Science Education, 33(2), 229-258. https://doi.org/10.1080/09500691003615343
  23. Robinson, P. (2008). Handbook of cognitive linguistics and second language acquisition. Routledge.
  24. Rupley, W., & Slough, S. (2010). Building prior knowledge and vocabulary in science in the intermediate grades: Creating hooks for learning. Literacy Research and Instruction, 49, 99-112. https://doi.org/10.1080/19388070902780472
  25. Ryoo, Y. (2009). Effects of two types of vocabulary practice: Receptive and productive. Foreign Languages Education, 16(1), 79-99.
  26. Sahlgren, M. (2008). The distributional hypothesis. Italian Journal of Disability Studies, 20, 33-53.
  27. Schmitt, N. (2000). Vocabulary in language teaching. Cambridge: Cambridge University Press.
  28. Shaw, J. (2002). Linguistically responsive science teaching. Electronic Magazine of Multicultural Education, 4(1), 24.
  29. Shin, J. C., & Ock, C. Y. (2012). A stage transition model for Korean part-of-speech and homograph tagging. Software and Application, 39(11), 889-901.
  30. Shin, W., Kim, I., & Kim, H. (2010). A study of spatial nouns and network analysis based on corpus. Text Linguistics, 29, 221-250.
  31. Shintani, N. (2011). A comparative study of the effects of input-based and production-based instruction on vocabulary acquisition by young EFL learners. Language Teaching Research, 15, 137-158. https://doi.org/10.1177/1362168810388692
  32. Stubbs, M. (1995). Collocations and semantic profiles. Functions of Language 2, 1.
  33. Vygotsky, L. S. (1962). Thought and language. MA: MIT Press.
  34. Waring, R. (1997). A study of receptive and productive learning from word cards. Studies in Foreign Languages and Literature, 21(1), 94-114.
  35. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press.
  36. Wittgenstein, L. (1958). The blue and brown books. Oxford: Blackwell.
  37. Yager, R. (1983). The importance of terminology in teaching K-12 science. Journal of Research in Science Teaching, 20, 577-588. https://doi.org/10.1002/tea.3660200610
  38. Yun, E. & Park, Y. (2016). Comparison of the usage of the science terminology 'force' in science and everyday languages. New Physics: Sae Mulli, 66(4), 460-467. https://doi.org/10.3938/NPSM.66.460
  39. Yun, E. & Park, Y. (2018). Extraction of scientific semantic networks from science textbooks and comparison with science teachers' spoken language by text network analysis. International Journal of Science Education, 40(17), 2118-2136. https://doi.org/10.1080/09500693.2018.1521536
  40. Yun, E., Kwon, S. G., & Park, Y. (2015). Analysis of problems of current science textbooks perceived by teachers and students in view of learner-centered classroom. Journal of Science Education, 39(3), 404-417. https://doi.org/10.21796/jse.2015.39.3.404
  41. Zhou, S. (2010). Comparing receptive and productive academic vocabulary knowledge of Chinese EFL learners. Asian Social Science, 6(10), 14-19.