• Title/Summary/Keyword: co-expressed genes

Search Result 209, Processing Time 0.036 seconds

Hepatic microRNAome reveals potential microRNA-mRNA pairs association with lipid metabolism in pigs

  • Liu, Jingge;Ning, Caibo;Li, Bojiang;Li, Rongyang;Wu, Wangjun;Liu, Honglin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1458-1468
    • /
    • 2019
  • Objective: As one of the most important metabolic organs, the liver plays vital roles in modulating the lipid metabolism. This study was to compare miRNA expression profiles of the Large White liver between two different developmental periods and to identify candidate miRNAs for lipid metabolism. Methods: Eight liver samples were collected from White Large of 70-day fetus (P70) and of 70-day piglets (D70) (with 4 biological repeats at each development period) to construct sRNA libraries. Then the eight prepared sRNA libraries were sequenced using Illumina next-generation sequencing technology on HiSeq 2500 platform. Results: As a result, we obtained 346 known and 187 novel miRNAs. Compared with the D70, 55 down- and 61 up-regulated miRNAs were shown to be significantly differentially expressed (DE). Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis indicated that these DE miRNAs were mainly involved in growth, development and diverse metabolic processes. They were predicted to regulate lipid metabolism through adipocytokine signaling pathway, mitogen-activated protein kinase, AMP-activated protein kinase, cyclic adenosine monophosphate, phosphatidylinositol 3 kinase/protein kinase B, and Notch signaling pathway. The four most abundantly expressed miRNAs were miR-122, miR-26a and miR-30a-5p (miR-122 only in P70), which play important roles in lipid metabolism. Integration analysis (details of mRNAs sequencing data were shown in another unpublished paper) revealed that many target genes of the DE miRNAs (miR-181b, miR-145-5p, miR-199a-5p, and miR-98) might be critical regulators in lipid metabolic process, including acyl-CoA synthetase long chain family member 4, ATP-binding casette A4, and stearyl-CoA desaturase. Thus, these miRNAs were the promising candidates for lipid metabolism. Conclusion: Our study provides the main differences in the Large White at miRNA level between two different developmental stages. It supplies a valuable database for the further function and mechanism elucidation of miRNAs in porcine liver development and lipid metabolism.

Effect of ciglitazone on adipogenic transdifferentiation of bovine skeletal muscle satellite cells

  • Zhang, Junfang;Li, Qiang;Yan, Yan;Sun, Bin;Wang, Ying;Tang, Lin;Wang, Enze;Yu Jia;Nogoy, Kim Margarette Corpuz;Li, Xiangzi;Choi, Seong-Ho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.934-953
    • /
    • 2021
  • Ciglitazone is a member of the thiazolidinedione family, and specifically binds to peroxisome proliferator-activated receptor-γ (PPARγ), thereby promoting adipocyte differentiation. We hypothesized that ciglitazone as a PPARγ ligand in the absence of an adipocyte differentiation cocktail would increase adiponectin and adipogenic gene expression in bovine satellite cells (BSC). Muscle-derived BSCs were isolated from six, 18-month-old Yanbian Yellow Cattle. The BSC were cultured for 96 h in differentiation medium containing 5 µM ciglitazone (CL), 10 µM ciglitazone (CM), or 20 µM ciglitazone (CH). Control (CON) BSC were cultured only in a differentiation medium (containing 2% horse serum). The presence of myogenin, desmin, and paired box 7 (Pax7) proteins was confirmed in the BSC by immunofluorescence staining. The CL, CM, and CH treatments produced higher concentrations of triacylglycerol and lipid droplet accumulation in myotubes than those of the CON treatment. Ciglitazone treatments significantly increased the relative expression of PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα), C/EBPβ, fatty acid synthase, stearoyl-CoA desaturase, and perilipin 2. Ciglitazone treatments increased gene expression of Pax3 and Pax7 and decreased expression of myogenic differentiation-1, myogenin, myogenic regulatory factor-5, and myogenin-4 (p < 0.01). Adiponectin concentration caused by ciglitazone treatments was significantly greater than CON (p < 0.01). RNA sequencing showed that 281 differentially expressed genes (DEGs) were found in the treatments of ciglitazone. DEGs gene ontology (GO) analysis showed that the top 10 GO enrichment significantly changed the biological processes such as protein trimerization, negative regulation of cell proliferation, adipocytes differentiation, and cellular response to external stimulus. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that DEGs were involved in the p53 signaling pathway, PPAR signaling pathway, biosynthesis of amino acids, tumor necrosis factor signaling pathway, non-alcoholic fatty liver disease, PI3K-Akt signaling pathway, and Wnt signaling pathway. These results indicate that ciglitazone acts as PPARγ agonist, effectively increases the adiponectin concentration and adipogenic gene expression, and stimulates the conversion of BSC to adipocyte-like cells in the absence of adipocyte differentiation cocktail.

Transcriptome profiling of rubber tree (Hevea brasiliensis) discovers candidate regulators of the cold stress response

  • Gong, Xiao-Xiao;Yan, Bing-Yu;Hu, Jin;Yang, Cui-Ping;Li, Yi-Jian;Liu, Jin-Ping;Liao, Wen-Bin
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1181-1197
    • /
    • 2018
  • Tropical plant rubber tree (Hevea brasiliensis) is the sole source of commercial natural rubber and low-temperature stress is the most important limiting factor for its cultivation. To characterize the gene expression profiles of H. brasiliensis under the cold stress and discover the key cold stress-induced genes. Three cDNA libraries, CT (control), LT2 (cold treatment at $4^{\circ}C$ for 2 h) and LT24 (cold treatment at $4^{\circ}C$ for 24 h) were constructed for RNA sequencing (RNA-Seq) and gene expression profiling. Quantitative real time PCR (qRT-PCR) was conducted to validate the RNA-Seq and gene differentially expression results. A total of 1457 and 2328 differentially expressed genes (DEGs) in LT2 and LT24 compared with CT were respectively detected. Most significantly enriched KEGG pathways included flavonoid biosynthesis, phenylpropanoid biosynthesis, plant hormone signal transduction, cutin, suberine and wax biosynthesis, Pentose and glucuronate interconversions, phenylalanine metabolism and starch and sucrose metabolism. A total of 239 transcription factors (TFs) were differentially expressed following 2 h or/and 24 h of cold treatment. Cold-response transcription factor families included ARR-B, B3, BES1, bHLH, C2H, CO-like, Dof, ERF, FAR1, G2-like, GRAS, GRF, HD-ZIP, HSF, LBD, MIKC-MADS, M-type MADS, MYB, MYB-related, NAC, RAV, SRS, TALE, TCP, Trihelix, WOX, WRKY, YABBY and ZF-HD. The genome-wide transcriptional response of rubber tree to the cold treatments were determined and a large number of DEGs were characterized including 239 transcription factors, providing important clues for further elucidation of the mechanisms of cold stress responses in rubber tree.

Transcriptomic Profile in Pear Leave with Resistance Against Venturia nashicola Infection (배 검은별무늬병 감염과 저항성 방어반응 연관 전사체 프로파일)

  • Il Sheob Shin;Jaean Chun;Sehee Kim;Kanghee Cho;Kyungho Won;Haewon Jung;Keumsun Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.36-36
    • /
    • 2022
  • The molecular understanding of resistance and susceptibility of host plants to scab, a most threatful disease to pome fruit production worldwide, is very limited. Comparing resistant line '93-3-98' to susceptible one 'Sweet Skin' at seven time points of 0, 0.5, 1, 2, 3, 4, 8 days post inoculation, RNA-sequencing data derived from infected and mock-inoculated young leaves were analyzed to evaluate the tolerant response and to mine candidate genes of pear to the scab pathogen Venturia nashicola. Analysis of the mapped reads showed that the infection of V. nashicola led to significant differential expression of 17,827 transcripts with more than 3-fold change in the seven pairs of libraries, of which 9,672 (54%) are up- and 8,155(46%) are down-regulated. These included mainly receptor (NB-ARC domains-containing, CC-NBS-LRR, TIR-NBS-LRR, seven transmembrane MLO family protein) and transcription factor (ethylene responsive element binding, WRKY DNA-binding protein) related gene. An arsenal of defense response of highly resistant pear accessions derived from European pear was probably supposed no sooner had V. nashicola infected its host than host genes related to disease suppression like Polyketide cyclase/dehydrase and lipid transport protein, WRKY family transcription factor, lectin protein kinase, cystein-rich RLK, calcium-dependent phospholipid-binding copine protein were greatly boosted and eradicated cascade reaction induced by pathogen within 24 hours. To identify transcripts specifically expressed in response to V. nashicola, RT-PCRs were conducted and compare to the expression patterns of seven cultivars with a range of highly resistant to highly susceptible symptom. A DEG belonging to the PR protein family genes that were higher expressed in response to V. nashicola suggesting extraordinary role in the resistance response were led to the identification. This study provides the first transcriptional profile by RNA-seq of the host plant during scab disease and insights into the response of tolerant pear plants to V. nashicola.

  • PDF

Nucleotide sequence analysis and expression of NSP4 gene of human rotaviruses isolated in Korea (국내에서 분리된 사람 로타바이러스의 NSP4 유전자 염기서열 분석 및 발현)

  • Jung, Dong-hyuk;Song, Yun-kyung;Kim, Kyung-mi;Park, Hyo-sun;Back, Myoung-soon;Kang, Shien-young
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.1
    • /
    • pp.89-100
    • /
    • 2002
  • The nonstructural glycoprotein NSP4, encoded by the 10th gene of rotavirus, has been known to play important roles in viral assembly and pathogenesis. The NSP4 genes of human rotavirus Korean isolates, designated as CBNU/HR-1, CBNU/HR-2, CBNU/HR-3, and CBNU/HR-4, were cloned, sequenced and characterized. Also, the NSP4 gene of the CBNU/HR-1 was expressed in a baculovirus-insect cell system. The sequence data indicated that the NSP4 genes of human rotavirus Korean isolates were 750 or 751 bases in length and encoded one open reading frame of 175 amino acids. Two glycosylation sites were recognized in the NSP4 gene of human rotavirus isolates tested. The NSP4 of CBNU/HR-1, CBNU/HR-3, and CBNU/HR-4 exhibited a high degree of amino acid sequence homology with that of NSP4 genotype B viruses, but a low degree of amino acid sequence homology with that of NSP4 genotype A viruses. However, the NSP4 of CBNU/HR-2 exhibited a high degree of amino acid sequence homology with that of NSP4 genotype A viruses, but a low degree of amino acid sequence homology with that of NSP4 genotype B viruses. The Sf9 cells infected with recombinant baculovirus, inserted with NSP4 gene of CBNU/HR-1, produced specific cytopathic effects and the expressed NSP4 was detected by immunofluorescence staining using NSP4-specific monoclonal antibody(MAb). The expressed NSP4 migrated at 16-26 kDa on SDS-PAGE and reacted with NSP4-specific MAb by Western blotting.

Effect of Carthami Tinctorii Fructus Herbal-acupuncture Solution(CTF-HAS) on Gene Expression in HepG2 carcinomar cells (Oligonucleotide chip를 이용한 홍화자약침액(紅花子藥鍼液)이 간암세포주(肝癌細胞柱)의 유전자(遺傳子) 발현(發顯)에 미치는 영향(影響))

  • Lee, Kyung-min;Lim, Seong-chul;Jung, Tae-young;Seo, Jung-chul;Han, Sang-won
    • Journal of Acupuncture Research
    • /
    • v.22 no.3
    • /
    • pp.215-225
    • /
    • 2005
  • Objective : It has long been known about the osteogenic effect of CTF-HAS on bone tissues. However, it has not been determined the effect of CTF-HAS on cancer cells. The purpose of this study is to screen the CTF-HAS mediated differentially expressed genes in cancer cells such as HepG2 hepatoma cells lines. Oligonucleotide microarray approach were employed to screen the differential expression genes. Methods : CTF-HAS was prepared by boiling and stored at $-70^{\circ}C$ until use. Cells were treated with various concentrations of CTF-HAS(0.1, 0.5, 1.5, 10, $20mg/m{\ell}$) for 24 h. Cytotoxicity was tested by MTT assay. To screen the differentially expressed genes in cancer cells, cells were treated with $1.5mg/m{\ell}$ of CTF-HAS. For oligonucleotide microarray assay, total RNA was used for gene expression analysis using oligonucleotide genechip (Human genome U133 Plus 2.0., Affimatrix Co.). ResuIts : It has no cytotoxic effects on HepG2 cells in all concentrations (0.1, 0.5, 1.5, 10, $20mg/m{\ell}$). More than twofold up-regulated genes were 19 genes. The number of more than twofold down-regulated genes was 13. Discussion : This study showed the screening of CTF-HAS mediated differentially regulated genes using combined approaches of oligonucleotide microarray. The screened genes will be used for the better understanding in therapeutic effect of CTF-HAS on cancer field.

  • PDF

Studies on Developing Direct Gene Transfer Based on Naked Plasmid DNA for Treating Anemia (Naked Plasmid DNA를 이용한 빈혈 치료용 Direct Gene Transfer 시스템의 개발에 대한 연구)

  • Park Young Seoub;Jung Dong Gun;Choi Cha Yong
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.341-347
    • /
    • 2004
  • Several gene delivery therapies are being developed for treatment of serum protein deficiency. EPO is one of the most promising therapeutic agent for this treatment which is currently being investigated in depth. This study has the ultimate purpose of improving the gene delivery system for an increase of red blood cell production. A plasmid DNA was constructed smaller than other plasmids for an increase in penetration into animal cells, and two genes were cloned into each vector as a co-delivery system to express erythropoietin, and interluekin-3 or thrombopoietin, which can act on erythroid cell, thus activating hematopoiesis synergically. This co-delivery system has an advantage of decreasing the labour required for industrial production of DNA vaccine. A new plasmid vector, pVAC, in size 2.9 kb, was constructed with the essential parts from PUC 19 and pSectagB, which is much smaller than other plasmid vector and is the size of 2.9 kb. Co-delivery system was constituted by cloning human erythropoietin with each of human interluekin-3 gene or human thrombopoietin gene into both pVAC and pSectagB. As a result, the transfection efficiency of pVAC was higer than that of pSectagB in vitro, and hematocrit level of the mice injected with pVAC is higher than that of other mice. And co-delivery system, made of several plasmid DNAs, was expressed in vitro.

Effects of Exocellobiohydrolase CBHA on Fermentation of Tobacco Leaves

  • Xueqin Xu;Qianqian Wang;Longyan Yang;Zhiyan Chen;Yun Zhou;Hui Feng;Peng Zhang;Jie Wang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1727-1737
    • /
    • 2024
  • The quality of tobacco is directly affected by macromolecular content, fermentation is an effective method to improve biochemical properties. In this study, we utilized CBHA (cellobiohydrolase A) glycosylase, which was expressed by Pichia pastoris, as an additive for fermentation. The contents of main chemical components of tobacco leaves after fermentation were determined, and the changes of microbial community structure and abundance in tobacco leaves during fermentation were analyzed. The relationship between chemical composition and changes in microbial composition was investigated, and the function of bacteria and fungi in fermentation was predicted to identify possible metabolic pathways. After 48 h of CBHA fermentation, the contents of starch, cellulose and total nitrogen in tobacco leaf decreased by 17.60%, 28.91% and 16.05%, respectively. The microbial community structure changed significantly, with Aspergillus abundance decreasing significantly, while Filobasidum, Cladosporium, Bullera, Komagataella, etc., increased in CBHA treated group. Soluble sugar was most affected by microbial community in tobacco leaves, which was negatively correlated with starch, cellulose and total nitrogen. During the fermentation process, the relative abundance of metabolism-related functional genes increased, and the expressions of cellulase and endopeptidase also increased. The results showed that the changes of bacterial community and dominant microbial community on tobacco leaves affected the content of chemical components in tobacco leaves, and adding CBHA for fermentation had a positive effect on improving the quality of tobacco leaves.

Soluble Production of CMP-Neu5Ac Synthetase by Co-expression of Chaperone Proteins in Escherichia coli (샤페론 단백질 동시 발현기술을 이용한 수용성 CMP-Neu5Ac Synthetase 생산)

  • Choi, Hwa Young;Li, Ling;Cho, Seung Kee;Lee, Won-Heong;Seo, Jin-Ho;Han, Nam Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.190-193
    • /
    • 2014
  • CMP-Neu5Ac synthetase is a key enzyme for the synthesis of CMP-Neu5Ac, which is an essential precursor of sialylated glycoconjugates. For the soluble expression of the CMP-Neu5Ac synthetase gene (neuA) from Escherichia coli K1, various heat shock proteins were co-expressed in E. coli BL21 (DE3) Star. In order to do this, a pG-KJE8 plasmid, encoding genes for GroEL-ES and DnaK-DnaJ-GrpE, was co-transformed with neuA and was expressed at $20^{\circ}C$ by the addition of 0.01 mM IPTG and 0.005 mg/ml L-arabinose. The co-expression of a variety of heat shock proteins resulted in the remarkably improved production of soluble CMP-Neu5Ac synthetase in E. coli.

Phototransduction and Visual Cycle in the Ascidian Tadpole Larva

  • Kusakabe, Takehiro;Nakashima, Yuki;Kusakabe, Rie;Horie, Takeo;Kawakami, Isao;Yoshida, Reiko;Inada, Kyoko;Nakagawa, Masashi;Tsuda, Motoyuki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.37-40
    • /
    • 2002
  • Ascidians are lower chordates, and their tadpole-like larvae share a basic body plan with vertebrates. To study photoreceptive systems in ascidians, we have isolated and characterized cDNA clones for three opsins, five G protein ${\alpha}$ subunits (G${\alpha}$), catalytic and regulatory subunits of cGMP phosphodiesterase (PDE), and arrestin from the ascidian Ciona intestinalis tadpole larva. Ci-opsin1 and Ci-opsin2 are vertebrate-type opsins, while Ci-opsin3 is a retinal photoisomerase similar to retinochrome and mammalian RGR. Both Ci-opsin1 and arrestin are specifically localized in the photoreceptor cells of the ocellus, whereas Ci -opsin2 is not expressed in the photoreceptors, but is co-localized in another population of neurons in the brain with PDE (Ci-PDE9 and Ci-PDE$\delta$). Ci-opsin3 is present in the entire region of the brain. Though five different cDNAs encoding Ga have been cloned, no transducin-type G protein has been found yet. Interestingly, one of G${\alpha}$i isoform is conspicuously expressed in the entire region of the brain. The Ci-opsin3 gene expression was observed in a broad area of the brain vesicle as well as in the visceral ganglion. Genes encoding ascidian homologs of CRALBP and ${\beta}$-CD, whose function is required for the mammalian visual cycle, are co-expressed with Ci-opsin3 in the brain vesicle and visceral ganglion. Localization of Ci-opsin3, CRALBP, and ${\beta}$-CD in a broad area of the brain suggests that the brain of the ascidian larva has a visual cycle system similar to that of the vertebrate RPE. Based on these data, we discuss the evolution of vertebrate visual systems.

  • PDF