• Title/Summary/Keyword: co-cycle

Search Result 1,794, Processing Time 0.041 seconds

A Study on the Characteristics of CO Oxidation by NO Poisoning in Pt/TiO2 Catalyst (Pt/TiO2 촉매에서의 NO 피독에 의한 CO 산화반응특성 연구)

  • Kim, Min Su;Kim, Se Won;Hong, Sung Chang
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.296-301
    • /
    • 2019
  • This study was conducted to investigate the characteristics of CO oxidation by NO poisoning in Pt/TiO2 catalyst prepared by wet impregnation method and calcined at 400 ℃. In order to confirm the NO poisoning effect of the Pt/TiO2 catalyst, the change of reaction activity was observed when NO was injected during the CO+O2 reaction where it was ascertained that the CO conversion rate rapidly decreased below 200 ℃. Also, CO conversion was not observed below 125 ℃. Recovery of initial CO conversion was not verified even if NO injection was blocked at 125 ℃. Accordingly, various analyses were performed according to NO injection. First, as a result of the TPD analysis, it was confirmed that NO pre-adsorption in catalyst inhibited CO adsorption and conversion desorption from adsorbed CO to CO2. When NO was pre-adsorbed, it was confirmed through H2-TPR analysis that the oxygen mobility of the catalyst was reduced. In addition, it was validated through FT-IR analysis that the redox cycle (Pt2+→Pt0→Pt2+) of the catalyst was inhibited. Therefore, the presence of NO in the Pt/TiO2 catalyst was considered to be a poisoning factor in the CO oxidation reaction, and it was determined that the oxygen mobility of the catalyst is required to prevent NO poisoning.

Effects of Multiple-CycleOperation and $SO_2$ Concentration on the Absorption Characteristics of $CO_2$ by means of Limestone (석회석의 $CO_2$의 흡수특성에 미치는 흡수/재생 반응의 반복횟수와 $SO_2$ 농도의 영향)

  • Ryu Ho-Jung
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.203-211
    • /
    • 2005
  • To investigate the effects of the number of multiple-cycles and $SO_2$ concentration on $CO_2$ absorption characteristics by means of limestone, $CO_2$ capture capacity has been measured in a bubbling fluidized bed reactor (0.1m 1.D., 1.17m high). Danyang limestone was used as a $CO_2$ sorbent and the number of cycles $(\~10th\;cycle)$ and $SO_2$ concentrations (0, 2000, 4000 ppm) were considered as variables. The measured $CO_2$ capture capacity decreased as the number of cycles increased and it showed $50\%$ or initial value after 10 cycles. Moreover, $CO_2$ rapture capacity decreased with 501 concentrations. For three different $SO_2$ concentrations, the total CaO utilization was almost the same but $SO_2$ capture capacity increased and $CO_2$ capture capacity decreased as $SO_2$ concentration increased. These results suggest that $SO_2$ capture reaction is predominant over $CO_2$ capture reaction in the simultaneous $CO_2/SO_2$ capture conditions.

Evaluation of Greenhouse Gas Emissions from Animal Manure Treatment Systems with Life Cycle Assessment : A Case Study (전과정평가를 이용한 가축분뇨 처리시설의 온실가스 배출량 평가 : 사례 연구)

  • Park, K.H.;Choi, D.Y.;Cho, S.B.;Yang, S.H.;Hwang, O.H.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.sup
    • /
    • pp.1-6
    • /
    • 2011
  • Korean Government announced 'The Roadmap to realize a low carbon green society on year 2020' on July 12, 2011 in order to mitigate greenhouse gas (GHG) emissions. Non-energy category of Food, Agriculture, Forestry and Fishery (FAFF) should mitigate 1,349 kilo $CO_2$-equivalent ($CO_2$-eq.) tonnes which is 7.1% of Business-As-Usual on year 2020. The mitigation from animal manure treatment system (AMTS) comprises ca. 45% of the total mitigated amount of Non-energy category of FAFF. Hence, the precise evaluation of GHG emissions from AMTS is important to find effective mitigation measures. Life cycle assessment was used to evaluate GHG emissions from AMTS. The most GHG emitter was a composting/liquid fertilizer/activated sludge system (1,649.45 kg $CO_2$-eq./head/year) and the least GHG emitter was a activated liquid fertilizer system (1,024.46 kg $CO_2$-eq./head/year). Thermophilic oxic process showed the highest ratio (34.9%) of GHG emissions by the use of electricity to total GHG emissions from systems. Energy efficiency should be considered to mitigate GHG emissions from AMTS.

Evaluation of High-Temperature Tensile Property of Diffusion Bond of Austenitic Alloys for S-CO2 Cycle Heat Exchangers (고온 S-CO2 사이클 열교환기용 스테인리스강 및 Fe-Cr-Ni 합금 확산 접합부의 고온 인장 특성평가)

  • Hong, Sunghoon;Sah, Injin;Jang, Changheui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1421-1426
    • /
    • 2014
  • To improve the inherent safety of the sodium-cooled fast reactor (SFR), the supercritical $CO_2$ ($S-CO_2$) Brayton cycle is being considered as an alternative power conversion system to steam the Rankine cycle. In the $S-CO_2$ system, a PCHE (printed circuit heat exchanger) is being considered. In this type of heat exchangers, diffusion bonding is used for joining the thin plates. In this study, the diffusion bonding characteristics of various austenitic alloys were evaluated. The tensile properties were measured at temperatures starting from the room temperature up to $650^{\circ}C$. For the 316H and 347H types of stainless steel, the tensile ductility was well maintained up to $550^{\circ}C$. However, the Incoloy 800HT showed lower strength and ductility at all temperatures. The microstructure near the bond line was examined to understand the reason for the loss of ductility at high temperatures.

The analysis on CO2 Emission of Domestic Apartment Housing during Operation and Maintenance (국내 공동주택 유지관리 단계에서의 CO2 배출량 분석)

  • Lim, Jae-Mu;Oh, Bong-Wook;Jang, Young-Jin;Cheon, Sang-Yong;Shin, Yoon-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.63-64
    • /
    • 2011
  • Recently, due to global warming, CO2 emissions is one of the global issues over all areas including construction industry. In Korea, apartment housing has large ratio of building construction and its CO2 emissions during the operation and maintenance has the most large amount of tatal life cycle of apartment housing. However, there are rare research related to this subject. So, this study investigates the CO2 emissions of domestic apartment housing during the operation and maintenance. In the future, the results of this study can be utilized in further study to decrease CO2 emissions strategy.

  • PDF

Influence of $CO_2$ Removal on the Performance of IGCC plant (IGCC 플랜트에서 $CO_2$ 제거가 성능에 미치는 영향)

  • Cha, Kyu-Sang;Kim, Young-Sik;Lee, Jong-Jun;Kim, Tong-Seop;Sohn, Jeong-Lak;Joo, Young-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.242-245
    • /
    • 2008
  • In the power generation industry, various efforts are needed to cope with tightening regulation on carbon dioxide emission. Integrated gasification combined cycle (IGCC) is a relatively environment friendly power generation method using coal. Moreover, pre-combustion $CO_2$ removal is possible in the IGCC system. Therefore, much effort is being made to develop advanced IGCC systems. However, removal of $CO_2$ may affect the system performance and operation through reduction of fuel gas supplied to the gas turbine. This study predicts system performance change due to $CO_2$ capture by pre-combustion process from the normal IGCC performance without $CO_2$ capture and presents results of design parametric analysis.

  • PDF

Coal gasification and A new IGCC system (석탄가스화와 새로운 IGCC 시스템)

  • Kim, Hyun-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.361-363
    • /
    • 2008
  • 탄소 개질반응은 $1200^{\circ}C$(도1) 이상에서 모든 탄화물질과 수분 또는 $CO_2$ 사이에서 흡열/환원반응이 일어나서 합성가스를 생성한다. 개질반응로는 산화반응로와 연결되어, 수소가스와 CO 가스의 혼합인,합성가스가 산화반응로 내에서 산소가스와 연소하여 열과 $H_2O+CO_2$를 생성하여 환원 반응로 내로 유입되어, 환원 반응로를 $1200^{\circ}C$ 이상으로 유지하고, $H_2O$$CO_2$는 석탄 속의 모든 탄소를 CO로 개질한다(도2). 동시에 수소가스가 생성되어 합성가스를 생성하게 된다. 석탄 속의 비탄소 물질인 슬래그(Slag)는 개질로 내에 남게 되는데, 개질로를 슬래그 융점(non-fluid point) 이하에서 고체상태로 포집함으로서 Fly-ash로 처리된다. 개질로 내의 온도를 $1200{\sim}1300^{\circ}C$(석탄 슬래그 융점)로 유지함으로서 개질반응이 지속되어 합성가스가 생성된다. IGCC 시스템에서는 합성가스를 가스터빈 속에서 $O_2E가스와 연소하여 고온의 가스를 생성하여 터빈을 가동해 발전을 하고 배출가스를 $1500{\sim}1700^{\circ}C$에서 배출한다. 재래식 IGCC(도4)에서는 ${\sim}1500^{\circ}C$의 배출가스를 열교환 시스템에 의해 증기를 생성하여 Steam turbine(증기터빈)을 가동하여 추가 전력을 생산했다. 그러나 본 시스템에서는 배출가스(증기와 $CO_2E 가스)를 위의 개질로에 유입하여 개질로 온도를 $1200{\sim}1300^{\circ}C$로 유지함으로서 더 많은 합성가스를 생성 하게 된다(도3). 이렇게 하여 Oxidation-reduction cycle을 형성하게 된다. 새로운 IGCC 시스템에서 가스 터빈의 배출가스가 석탄 개질로에 연결되고 석탄개질로의 합성가스 출구가 가스터빈의 가스 입구에 연결됨으로서,외부에너지 주입 없이 지속 가능한 가스화 반응과 터빈 사이클(Cycle)을 완성하여 IGCC 시스템의 석탄 열효율을 1단계 상승시켰다. 이렇게 설계된 석탄가스화기는 Lurgi형 석탄가스화 기와 달리 석탄개질반응의 효율을 높일 수 있고, 슬래그 처리가 간단하기 때문에 석탄가스화기가 소형화 될 수 있으며 슬래그(Slag)용융에 따른 석탄가스화기의 외벽손상을 피할 수 있다.

  • PDF

Electrochemical Properties and Thermal Stability of LiNi0.8Co0.15 Al0.05O2-LiFePO4 Mixed Cathode Materials for Lithium Secondary Batteries

  • Kim, Hyun-Ju;Jin, Bong-Soo;Doh, Chil-Hoon;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.63-67
    • /
    • 2012
  • We prepared various $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-cathode electrodes by changing the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ and $LiFePO_4$ used, and we analyzed the electrochemical characteristics of the cathodes. We found that the reversible specific capacity of the cathodes increased and that the capacity retention ratios of the cathodes decreased during cycling as the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ increased. Conversely, we found that although the reversible specific capacity of the cathodes decreased because of the material composition, the cycle property of the cathodes increased when the $LiFePO_4$ content increased. We analyzed the thermal stability of the $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-material cathodes by differential scanning calorimetry and found that it increased as the $LiFePO_4$ content increased.