• Title/Summary/Keyword: co-cycle

Search Result 1,786, Processing Time 0.034 seconds

Study on the Factors Influencing Fertilization and Developmental Rate of in vitro Cultured Cat Oocytes Recovered from Ovaries Collected at Different Stages of the Reproductive Cycle (번식주기의 단계별로 회수한 고양이 난자의 체외발생에 미치는 요인에 관한 연구)

  • Quen, J. H.;M. H. Lee;S. K. Kim
    • Reproductive and Developmental Biology
    • /
    • v.28 no.1
    • /
    • pp.53-57
    • /
    • 2004
  • The study was carried out to investigate the effects of morphology, reproductive cycle, incubation time and activation of oocytes on in vitro maturation of cat oocytes and development of IVM/IVF embryos. The results were summarized as follows: 1. When recovered from ovaries collected at different stages of the reproductive cycle (inactive, follicular and luteal stage), the developmental rates of oocytes to GV and MI stage were 72.5% and 27.5%, 57.5% and 7.5%, 62.5% and 17.5%, respectively. 2. The developmental rates of oocytes with cumulus cells to GV and MI stage in different conditions of incubation (5% $CO_2$ , 95% $O_2$ and 10% $CO_2$, 90% $O_2$) were 70.0% and 27.5%, 52.5% and 20.0%, 55.0% and 12.5%, respectively. 3. The developmental rates to GV and MI oocytes when cultured at different time of incubation (17∼20, 21∼24, 25∼28 and 29∼32 h) were 67.5% and 20.0%, 67.5% and 30.0%, 62.5% and 22.5%, 65.0% and 15.0%, respectively. 4. The fertilization and cleavage rates of freshly collected oocytes with and without cumulus cells were 72.5% and 25.0%, 37.5% and 7.5%, respectively. The rates were greater in oocytes with cumulus cells than those without cumulus cells. 5. The fertilization and cleavage rates of oocytes recovered from ovaries collected at different stages of the reproductive cycle (inactive, follicular and luteal stage) were 75.0% and 25.0%, 40.0% and 7.5%, 50.0% and 15.0%, respectively.

A Study of the Influence of Condensing Water Temperature on Low Temperature Geothermal Power Generation (응축수온도가 저온지열발전 성능에 미치는 영향 연구)

  • Kim, Jin-Sang;Lee, Chung-Kook
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.17-23
    • /
    • 2007
  • Geothermal energy is used in various forms, such as power generation, direct use, and geothermal heat pumps. High temperature geothermal energy sources have been used for power generation for more than a century. Recent technical advances in power generation equipments make relatively low temperature geothermal energy to be available for power generation. In these applications, lower temperature geothermal energy source makes smaller difference between condensing water temperature and it. Various condensing water temperatures were investigated in analyzing its influence on power generation performance. Condensing water temperature of organic Rankine cycle imposed greater influence on power generation and its performance in lower temperature geothermal power generation.

  • PDF

A Study on the Emission Characteristics in 4 Stroke Large Propulsion Diesel Engine (4행정 대형 디젤엔진의 배기 배출특성에 관한 연구)

  • 김현규;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.38-45
    • /
    • 2001
  • Environmental protection on the ocean has been interested and nowadays the International maritime organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the emission characteristics of 4 stroke propulsion diesel engine in E2 cycle (constant speed) and E3 cycle (propeller curved speed). Also the effects of important operating parameters in terms of intake air pressure and temperature, and maximum combustion pressure are described on the specific emissions. Emissions measurement and calculation are processed according to IMO technical code. The results show that NOx emission level in E3 cycle is higher than E2 cycle due to lower engine speed and lower maximum combustion pressure by retarding fuel injection timing. Intake air temperature has strong influence on NOx emission production. And CO, HC emissions are not affected by maximum combustion pressure and intake air pressure and temperature.

  • PDF

Effects of the Intake Valve Timing and the Injection Timing for a Miller Cycle Engine

  • Han, Sung-Bin;Chang, Yong-Hoon;Choi, Gyeung-Ho;Chung, Yon-Jong;Poompipatpong, Chedthawut;Koetniyom, Saiprasit
    • Journal of Energy Engineering
    • /
    • v.19 no.1
    • /
    • pp.32-38
    • /
    • 2010
  • The objective of the research was to study the effects a Miller cycle. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. Miller Cycle without supercharging can increase brake thermal efficiency 1.08% and reduce brake specific fuel consumption 4.58%. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency.

A Study on the Estimation Method of the Environmental Load Intensity for Analyzing GHG Reduction Effect of Han-Ok

  • Kim, Sunghee
    • Architectural research
    • /
    • v.15 no.3
    • /
    • pp.143-150
    • /
    • 2013
  • The Korean government recently has rediscovered the potential value of Han-Ok, the Korean traditional house, as an eco-friendly building. In order to objectively verify the environmental performance of Han-Ok as a low carbon green building, this paper suggests the analysis method of GHG emission load of Korean traditional house, based on Life Cycle Assessment, which is commonly abbreviated to "LCA". The environmental impacts caused by building construction and operation can be analyzed through the sum of input and output data from every phase. The study particularly describes the GHG reduction effect by using traditional building materials such as wood products, traditional clay roof tiles, and mud, which are mainly used to construct Han-Ok. Also the study proposes the method for comparative analysis of quantity of GHG emissions in building's entire life cycle so that the data can be used as a reliable basis to optimize the environmental performance of building.

Introduction of Program Life-Cycle Management System for Space Launch System Development (우주 발사 시스템 개발을 위한 통합 기술관리 시스템 소개)

  • Joh, Miok;Shin, Myoung Ho
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.48-53
    • /
    • 2006
  • A web-based program life-cycle management(PLM) system is introduced to implement the system engineering processes and to provide the development traceability online. This information system aims for the realization of essential system engineering management techniques currently applied to the space launch system development program including management of configuration and data based on the work breakdown structure(WBS), WBS, bill of materials and mass properties. The system enhances communication and gives access to the development data with relevant information such as data-to-data relation and approval status/history through the web, and preserve all of the development data throughout the program life-cycle. Further improvement of the system is planned to implement the program management processes and co provide integrated information useful for the programmatic decision making.

  • PDF

Evaluation of environmental impacts for the bogie of electric motor unit(EMU) using simplified life cycle assessment(S-LCA) (간략화된 전과정 평가를 이용한 전동차 대차의 환경영향 진단)

  • Kim Yong-Ki;Yoon Hee-Teak;Yang Yun-Hee;Lee Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.581-585
    • /
    • 2005
  • In this study, the environmental impacts of a bogie in the electric motor unit(EMU) were evaluated quantitatively using simplified life cycle assessment(S_LCA). Target was the bogie and life cycle inventory(LCI) database for the bogie was established. The software used for simplified LCA was PASS. Environmental impacts with the parts of the bogie were dependent on their weight significantly. Among impact categories, abiotic resource depletion(ARD) and global warming(GW) were shown dominantly. Global warming was occurred mainly due to the emission of CO₂released from energy consumption and abiotic resource depletion was caused mostly by the consumption of iron ore for the manufacturing of steel. Therefore, the environmental impacts of the bogie could be reduced by the light-weighting of EMU and the improvement of energy efficiency.

System Configuration Studies on Gas Turbine Combined Cycle Power Plants - Application to Processes for Carbon Capture System (가스 터빈 복합화력 발전 플랜트의 시스템 구성 제안 - CO2 포집 대안 별 비교 평가)

  • Kim, Seungjin;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.15-17
    • /
    • 2013
  • In the design of combined cycle power plants, the design parameters considered mainly could be changed and added for performance evaluation with change on the design objective and method. Therefore, the design criteria considering the different objectives and type of power plant were needed. Thermodynamic and economic analyses of various types of gas turbine combined cycle power plants with demand on generation of power and heat and carbon capture system from high pressure flue gas have been performed to establish criteria for optimization of power plants.

  • PDF

The Analysis of CO2 Emission Assessment in Concrete with Smart Blast Furnace Slag (스마트 고로슬래그미분말 혼입 콘크리트의 CO2 배출량 평가에 관한 연구)

  • Kim, Tae-Hyoung;Tae, Sung-Ho;Ha, Sung-Kyun;Park, Jung-Hoon;Roh, Seung-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.43-45
    • /
    • 2012
  • As a part of recent CO2 emission reduction studies in the concrete industry with active use of concrete admixtures with low basic unit of CO2 emission such as blast furnace slag (BFS), basic unit of CO2 emission by SBFS was computed in order to assess CO2 emission by reinforced concrete building with smart blast furnace slag (SBFS). In addition, SBFS concrete was applied to the subject building for assessment of CO2 emission during material production step among construction steps. Life cycle CO2 emission assessment on the subject building was classified into 7cases according to mix ratio of BFS and SBFS.

  • PDF

Fatty acid uptake and oxidation in skeletal muscle

  • Yun, Hea-Yeon;Tamura, Tomohiro;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Long chain fatty acids (LCFAs) are transported into cells via plasma transporters, are activated to fatty acyl-CoA by fatty acyl-CoA synthase (ACS), and enter mitochondria via the carnitine system (CPT1/CACT/CPT2). The mitochondrial carnitine system plays an obligatory role in β-oxidation of LCFAs by catalyzing their transport into the mitochondrial matrix. Fatty acyl-CoAs are oxidized via the β-oxidation pathway, which results in the production of acetyl-CoA. The acetyl-CoA can be imported into the tricarboxylic acid (TCA) cycle for oxidation in the mitochondrial matrix or can be used for malonyl-CoA synthesis by acetyl-CoA carboxylase 2 (ACC2) in the cytoplasm. In skeletal muscle, ACC2 catalyzes the carboxylation of acetyl-CoA to form malonyl-CoA, which is a potent endogenous inhibitor of carnitine palmitoyltransferase 1 (CPT1). Thus, ACC2 indirectly inhibits the influx of fatty acids into the mitochondria. Fatty acid metabolism can also be regulated by malonyl-CoA-mediated inhibition of CPT1.