• Title/Summary/Keyword: co-classification

Search Result 756, Processing Time 0.033 seconds

The Target Detection and Classification Method Using SURF Feature Points and Image Displacement in Infrared Images (적외선 영상에서 변위추정 및 SURF 특징을 이용한 표적 탐지 분류 기법)

  • Kim, Jae-Hyup;Choi, Bong-Joon;Chun, Seung-Woo;Lee, Jong-Min;Moon, Young-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.43-52
    • /
    • 2014
  • In this paper, we propose the target detection method using image displacement, and classification method using SURF(Speeded Up Robust Features) feature points and BAS(Beam Angle Statistics) in infrared images. The SURF method that is a typical correspondence matching method in the area of image processing has been widely used, because it is significantly faster than the SIFT(Scale Invariant Feature Transform) method, and produces a similar performance. In addition, in most SURF based object recognition method, it consists of feature point extraction and matching process. In proposed method, it detects the target area using the displacement, and target classification is performed by using the geometry of SURF feature points. The proposed method was applied to the unmanned target detection/recognition system. The experimental results in virtual images and real images, we have approximately 73~85% of the classification performance.

Detection of Cropland in Reservoir Area by Using Supervised Classification of UAV Imagery Based on GLCM (GLCM 기반 UAV 영상의 감독분류를 이용한 저수구역 내 농경지 탐지)

  • Kim, Gyu Mun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.433-442
    • /
    • 2018
  • The reservoir area is defined as the area surrounded by the planned flood level of the dam or the land under the planned flood level of the dam. In this study, supervised classification based on RF (Random Forest), which is a representative machine learning technique, was performed to detect cropland in the reservoir area. In order to classify the cropland in the reservoir area efficiently, the GLCM (Gray Level Co-occurrence Matrix), which is a representative technique to quantify texture information, NDWI (Normalized Difference Water Index) and NDVI (Normalized Difference Vegetation Index) were utilized as additional features during classification process. In particular, we analyzed the effect of texture information according to window size for generating GLCM, and suggested a methodology for detecting croplands in the reservoir area. In the experimental result, the classification result showed that cropland in the reservoir area could be detected by the multispectral, NDVI, NDWI and GLCM images of UAV, efficiently. Especially, the window size of GLCM was an important parameter to increase the classification accuracy.

Development of Portable Cable Fault Detection System with Automatic Fault Distinction and Distance Measurement (자동 고장 판별 및 거리 측정 기능을 갖는 휴대용 케이블 고장 검출 장치 개발)

  • Kim, Jae-Jin;Jeon, Jeong-Chay
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1774-1779
    • /
    • 2016
  • This paper proposes a portable cable fault detection system with automatic fault distinction and distance measurement using time-frequency correlation and reference signal elimination method and automatic fault classification algorithm in order to have more accurate fault determination and location detection than conventional time domain refelectometry (TDR) system despite increased signal attenuation due to the long distance to cable fault location. The performance of the developed system method was validated via an experiment in the test field constructed for the standardized performance test of power cable fault location equipments. The performance evaluation showed that accuracy of the developed system is less than 1.34%. Also, an error of automatic fault type and location by detection of phase and peak value through elimination of the reference signal and normalization of correlation coefficient and automatic fault classification algorithm not occurred.

Research on Function and Policy for e-Government System using Semantic Technology (전자정부내 의미기반 기술 도입에 따른 기능 및 정책 연구)

  • Go, Gwang-Seop;Jang, Yeong-Cheol;Lee, Chang-Hun
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.79-87
    • /
    • 2007
  • This paper aims to offer a solution based on semantic document classification to improve e-Government utilization and efficiency for people using their own information retrieval system and linguistic expression Generally, semantic document classification method is an approach that classifies documents based on the diverse relationships between keywords in a document without fully describing hierarchial concepts between keywords. Our approach considers the deep meanings within the context of the document and radically enhances the information retrieval performance. Concept Weight Document Classification(CoWDC) method, which goes beyond using exist ing keyword and simple thesaurus/ontology methods by fully considering the concept hierarchy of various concepts is proposed, experimented, and evaluated. With the recognition that in order to verify the superiority of the semantic retrieval technology through test results of the CoWDC and efficiently integrate it into the e-Government, creation of a thesaurus, management of the operating system, expansion of the knowledge base and improvements in search service and accuracy at the national level were needed.

  • PDF

CLASSIFICATION OF (k, 𝜇)-ALMOST CO-KÄHLER MANIFOLDS WITH VANISHING BACH TENSOR AND DIVERGENCE FREE COTTON TENSOR

  • De, Uday Chand;Sardar, Arpan
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1245-1254
    • /
    • 2020
  • The object of the present paper is to characterize Bach flat (k, 𝜇)-almost co-Kähler manifolds. It is proved that a Bach flat (k, 𝜇)-almost co-Kähler manifold is K-almost co-Kähler manifold under certain restriction on 𝜇 and k. We also characterize (k, 𝜇)-almost co-Kähler manifolds with divergence free Cotton tensor.

Research of Quantitative Modeling that Classify Personal Color Skin Tone (퍼스널 컬러 스킨 톤 유형 분류의 정량적 평가 모델 구축에 대한 연구)

  • Kim, Yong Hyeon;Oh, Yu Seok;Lee, Jung Hoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.1
    • /
    • pp.121-132
    • /
    • 2018
  • Recent beauty trends focus on suitability to individual features. A personal color system is a recent aesthetic concept that influences color make up and coordination. However, a personal color concept has several weaknesses. For example, type classification is qualitative and not quantitative because its measuring system is a sensory test with no industry standard of personal color system. A quantitative personal color type classification model is the purpose of this study, which can be a solution to above problems. This model is a kind of mapping system in a 3D Cartesian coordinate system which has own axes, Value, Saturation, and Yellowness. The cheek color of the individual sample is also independent variable and personal color type is a dependent variable. In order to construct the model, this study conducted a colorimetric survey on a 993 sampling frequency of Korean women in their 20s and 30s. The significance of this study is as follows. First, through this study, personal color system is established on quantitative color space; in addition, the model has flexibility and scalability because it consisted of independent axis that allows for the inclusion of any other critical variable in the form of variable axis.

Application of Deep Learning-Based Nuclear Medicine Lung Study Classification Model (딥러닝 기반의 핵의학 폐검사 분류 모델 적용)

  • Jeong, Eui-Hwan;Oh, Joo-Young;Lee, Ju-Young;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.41-47
    • /
    • 2022
  • The purpose of this study is to apply a deep learning model that can distinguish lung perfusion and lung ventilation images in nuclear medicine, and to evaluate the image classification ability. Image data pre-processing was performed in the following order: image matrix size adjustment, min-max normalization, image center position adjustment, train/validation/test data set classification, and data augmentation. The convolutional neural network(CNN) structures of VGG-16, ResNet-18, Inception-ResNet-v2, and SE-ResNeXt-101 were used. For classification model evaluation, performance evaluation index of classification model, class activation map(CAM), and statistical image evaluation method were applied. As for the performance evaluation index of the classification model, SE-ResNeXt-101 and Inception-ResNet-v2 showed the highest performance with the same results. As a result of CAM, cardiac and right lung regions were highly activated in lung perfusion, and upper lung and neck regions were highly activated in lung ventilation. Statistical image evaluation showed a meaningful difference between SE-ResNeXt-101 and Inception-ResNet-v2. As a result of the study, the applicability of the CNN model for lung scintigraphy classification was confirmed. In the future, it is expected that it will be used as basic data for research on new artificial intelligence models and will help stable image management in clinical practice.

Classification Characteristics of High Efficient Turbo Classifier (고성능 터보분급기의 분급 특성)

  • Song, Dong-Keun;Hong, Won-Seok;Han, Bang-Woo;Kim, Hak-Joon;Huh, Byong-Soo;Kim, Yong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2423-2428
    • /
    • 2008
  • A turbo classifier having a rotating rotor of two stage classification region has been developed to have a cut size of 1 micro meter. Particle number concentrations were counted using Aerosol Particle Sizer (APS, TSI co., USA) at inlet and outlet of the classifier. Partial classification efficiency was obtained at various rotation speeds, total flow rates, and feed rates of powders, and classification characteristic depending on design parameters was discussed. Classification performance was enhanced as rotation speed of rotor increased and total flow rate decreased.

  • PDF

An Approximation Method in Collaborative Optimization for Engine Selection coupled with Propulsion Performance Prediction

  • Jang, Beom-Seon;Yang, Young-Soon;Suh, Jung-Chun
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.41-60
    • /
    • 2004
  • Ship design process requires lots of complicated analyses for determining a large number of design variables. Due to its complexity, the process is divided into several tractable designs or analysis problems. The interdependent relationship requires repetitive works. This paper employs collaborative optimization (CO), one of the multidisciplinary design optimization (MDO) techniques, for treating such complex relationship. CO guarantees disciplinary autonomy while maintaining interdisciplinary compatibility due to its bi-level optimization structure. However, the considerably increased computational time and the slow convergence have been reported as its drawbacks. This paper proposes the use of an approximation model in place of the disciplinary optimization in the system-level optimization. Neural network classification is employed as a classifier to determine whether a design point is feasible or not. Kriging is also combined with the classification to make up for the weakness that the classification cannot estimate the degree of infeasibility. For the purpose of enhancing the accuracy of a predicted optimum and reducing the required number of disciplinary optimizations, an approximation management framework is also employed in the system-level optimization.