• Title/Summary/Keyword: co occurrence

Search Result 1,063, Processing Time 0.027 seconds

Co-existence of Intestinal Adenocarcinoma and Leiomyosarcoma in a Schnauzer Dog (슈나유저 개의 소장에 샘암종과 평활근육종의 동시 발생 1례)

  • Yang, Cheol-Ho;Na, Sae-Won;Han, Jae-Ik;Park, Hee-Myung
    • Journal of Veterinary Clinics
    • /
    • v.33 no.1
    • /
    • pp.43-47
    • /
    • 2016
  • A 7-year-old castrated male Schnauzer was presented with melena and inappetence. Laboratory examination revealed mild anemia. Abdominal ultrasonography showed abnormal enlargement of intestinal segment and a oval mass with soft tissue density. After surgical resection of the enlarged intestine including the mass, histopathologic examination showed that the mass was tentatively diagnosed as synchronous occurrence of gland cell- and mesenchymal cell-origin tumors. Subsequently, immunohistochemistry showed positivity to cytokeratin AE1/AE3 in the gland cells and positivity to ${\alpha}-smooth$ muscle-specific actin, but negative expression of c-Kit, suggesting the co-existence of adenocarcinoma and leiomyosarcoma. Follow-up examination after 3-year of the surgery confirmed that the dog remained healthy and did not show recurrence of the tumors.

Magnetic Flux Leakage (MFL) based Defect Characterization of Steam Generator Tubes using Artificial Neural Networks

  • Daniel, Jackson;Abudhahir, A.;Paulin, J. Janet
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.34-42
    • /
    • 2017
  • Material defects in the Steam Generator Tubes (SGT) of sodium cooled fast breeder reactor (PFBR) can lead to leakage of water into sodium. The water and sodium reaction will lead to major accidents. Therefore, the examination of steam generator tubes for the early detection of defects is an important requirement for safety and economic considerations. In this work, the Magnetic Flux Leakage (MFL) based Non Destructive Testing (NDT) technique is used to perform the defect detection process. The rectangular notch defects on the outer surface of steam generator tubes are modeled using COMSOL multiphysics 4.3a software. The obtained MFL images are de-noised to improve the integrity of flaw related information. Grey Level Co-occurrence Matrix (GLCM) features are extracted from MFL images and taken as input parameter to train the neural network. A comparative study on characterization have been carried out using feed-forward back propagation (FFBP) and cascade-forward back propagation (CFBP) algorithms. The results of both algorithms are evaluated with Mean Square Error (MSE) as a prediction performance measure. The average percentage error for length, depth and width are also computed. The result shows that the feed-forward back propagation network model performs better in characterizing the defects.

DEVELOPMENT OF ROLLOVER CRITERIA BASED ON SIMPLE PHYSICAL MODEL OF ROLLOVER EVENT

  • KIM M. H.;OH J. H.;LEE J. H.;JEON M. C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2006
  • The high potential for injury involved in rollover accidents warrants the development of a system to protect passengers against such events. To effectively implement such a protection system, it is first necessary to determine rollover criteria (i.e., real time states which indicate the occurrence of rollover events). In this paper, several rollover criteria have been developed based on simplified physical models. Such accidents are first classified into two types, untripped and tripped, according to the main cause that initiates the rollover. Characteristics of these rollover situations are identified by applying appropriate principles of dynamics to corresponding simplified physical models. Two main rollover criteria, Rotational Kinetic Energy (RKE) and Initial Kinetic Energy (IKE), are then introduced based on these characteristics. ADAMS/View simulations have been performed to verify the feasibility of the introduced rollover criteria. ADAMS/Car simulations have also been conducted to get more realistic rollover data with a complete vehicle model. Results of these experiments reveal that our established criteria prove useful for predicting whether actual rollover occurs or not.

Characterization of the Nano-material U Membranes with Excellent Fouling Resistance (막 오염 저항성이 우수한 나노 소재 정밀 여과막의 특성 연구)

  • Choi Jeong Hwan;Lee Jeong Bin;Kim In-chul
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.289-296
    • /
    • 2005
  • In the MBR process, the membrane fouling occurs seriously on the membrane surface. In general, the membrane fouling is attributed to factors such as deposition or adhesion of sludge floc. The occurrence of fouling is a main cause of a decrease in membrane module fluk. At this study, our MBR membrane is manufactured by nano-particle with excellent anti-fouling character. The fine nano-material which can repel the sludge Hoc from the membrane surface is distributed in the membrane surface. We confirm anti-fouling effect, test continuously in the pilot site.

Level 1 probabilistic safety assessment of supercritical-CO2-cooled micro modular reactor in conceptual design phase

  • So, Eunseo;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.498-508
    • /
    • 2021
  • Micro reactors are increasingly being considered for utilization as distributed power sources. Hence, the probabilistic safety assessment (PSA) of a direct supercritical-CO2-cooled fast reactor, called micro modular reactor (MMR), was performed in this study; this reactor was developed using innovative design concepts. It adopted a modular design and passive safety systems to minimize site constraints. As the MMR is in its conceptual design phase, design weaknesses and valuable safety insights could be identified during PSA. Level 1 internal event PSA was carried out involving literature survey, system characterization, identification of initiating events, transient analyses, development of event trees and fault trees, and quantification. The initiating events and scenarios significantly contributing to core damage frequency (CDF) were determined to identify design weaknesses in MMR. The most significant initiating event category contributing to CDF was the transients with the power conversion system initially available category, owing to its relatively high occurrence frequency. Further, an importance analysis revealed that the safety of MMR can be significantly improved by improving the reliability of reactor trip and passive decay heat removal system operation. The findings presented in this paper are expected to contribute toward future applications of PSA for assessing unconventional nuclear reactors in their conceptual design phases.

Effect of Bacterial Wilt on Fungal Community Composition in Rhizosphere Soil of Tobaccos in Tropical Yunnan

  • Zheng, Yuanxian;Wang, Jiming;Zhao, Wenlong;Cai, Xianjie;Xu, Yinlian;Chen, Xiaolong;Yang, Min;Huang, Feiyan;Yu, Lei;He, Yuansheng
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.203-211
    • /
    • 2022
  • Bacterial wilt, which is a major soil-borne disease with widespread occurrence, poses a severe danger in the field of tobacco production. However, there is very limited knowledge on bacterial wilt-induced microecological changes in the tobacco root system and on the interaction between Ralstonia solanacearum and fungal communities in the rhizosphere soil. Thus, in this study, changes in fungal communities in the rhizosphere soil of tobaccos with bacterial wilt were studied by 18S rRNA gene sequencing. The community composition of fungi in bacterial wilt-infected soil and healthy soil in two tobacco areas (Gengma and Boshang, Lincang City, Yunnan Province, China) was studied through the paired comparison method in July 2019. The results showed that there were significant differences in fungal community composition between the rhizosphere soil of diseased plants and healthy plants. The changes in the composition and diversity of fungal communities in the rhizosphere soil of tobaccos are vital characteristics of tobaccos with bacterial wilt, and the imbalance in the rhizosphere microecosystem of tobacco plants may further aggravate the disease.

Prediction of Defect Rate Caused by Meteorological Factors in Automotive Parts Painting (기상환경에 따른 자동차 부품 도장의 불량률 예측)

  • Pak, Sang-Hyon;Moon, Joon;Hwang, Jae-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.290-291
    • /
    • 2021
  • Defects in the coating process of plastic automotive components are caused by various causes and phenomena. The correlation between defect occurrence rate and meteorological and environmental conditions such as temperature, humidity, and fine dust was analyzed. The defect rate data categorized by type and cause was collected for a year from a automotive parts coating company. This data and its correlation with environmental condition was acquired and experimented by machine learning techniques to predict the defect rate at a certain environmental condition. Correspondingly, the model predicted 98% from fine dust and 90% from curtaining (runs, sags) and hence proved its reliability.

  • PDF

Development of a Fluorescence Measurement System Capable of Rapid Red Tide Monitoring (신속한 적조 예찰이 가능한 형광 측정시스템 개발)

  • Kyung-hoon Baek;Yeongji Oh;Hyeonseo Cho;Yoonja Kang;Joon-seok Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.30-33
    • /
    • 2024
  • The occurrence of harmful algae on the coast of Korea has been a cause of damage to the aquaculture industry and deterioration of the coastal ecosystem environment. A method is required to predict their outbreak in real-time at the site. Therefore, this study attempted to develop a small hybrid optical sensor and real-time monitoring system based on LiDAR that can be used in the field and laboratory and can be applied to various platforms. FMS-L specifically suggested the amount of Chlorophyll a (Chl a) in the sample by measuring and analyzing the fluorescence emitted by the irradiating light. The accuracy of FMS-L was verified by measuring the concentrations of standard Chlorophyll a substances and Margalfidinium polykirkoids. In addition, the precision was verified by comparing the measurement results of FMS-L using commercial equipment Phyto-PAM-II. This equipment is compact and easy to move. Therefore, it can be easily applied to field surveys, allows short time measurements (10 s), and can be applied at a distance of 10 m from the measurement site.

The Impact of Climate Change on Fire

  • Eun-Hee JEON;Eun-Gu, HAM
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.4
    • /
    • pp.15-20
    • /
    • 2024
  • Purpose: Climate change is greatly affecting the frequency and intensity of fires around the world. The main effects of climate change on fires are rising temperatures, dry seasons and extreme droughts, changes in precipitation, increased strong winds, extended fire danger periods, and changes in natural ecosystems. Several factors due to climate change are increasing the risk of large-scale fires, such as wildfires. Research design, data and methodology: Rising temperatures caused by climate change will make forests and grasslands drier, make it easier for wildfires to occur in drier environments and spread quickly to wider areas, and the generated wildfires will release large amounts of greenhouse gases into the atmosphere, such as carbon dioxide (CO2), and the released greenhouse gases will strengthen the global greenhouse effect, further raising the temperature. As temperatures rise, the risk of wildfires increases in drier environments, and this process is repeated, leading to a vicious cycle of intensifying climate change as more fires occur and more greenhouse gases are released. Results: In conclusion, climate change is increasing the risk of fire occurrence and this phenomenon is expected to become more frequent and severe in the future. Conclusions: In order to cope with the increasing fire risk caused by climate change, fire prevention and management. Fire detection and response systems need to be strengthened, supportive policies and international cooperation are needed to restore ecosystems, and these measures, along with fire prevention, management and countermeasures, should take into account long-term climate change and adaptation as well as short-term responses.

Analysis of Fire Occurrence Characteristics According to Ignition Heat Sources (발화열원에 따른 화재발생 특성 분석)

  • Lee, Kyung-Su;Kim, Tae-Hyeung;Lee, Jae-Ou
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.280-289
    • /
    • 2022
  • Purpose: In this study, the characteristics of fire occurrence according to ignition heat sources such as operating equipment, cigarette/lighter fire, and flame/fire were analyzed. Method: One-way ANOVA and cross-analysis were used to analyze the characteristics of fire occurrence by verifying the difference between the ignition environment, fire damage status and scale, and cause of ignition according to the ignition heat source. Result: The fire occurrence characteristics were analyzed through As a result of the analysis, it was found that fires caused by operating devices occurred more frequently on weekdays than other ignition heat sources, and the number of victims and the number of victims were the highest, so mobilization of firefighting power and property damage were the greatest. The initial ignition was generated by electric and electronic devices, and the combustion was expanded by the synthetic resin. For fires caused by cigarette and lighter fires, the most fires occurred on Saturdays and Sundays, and the mobilization of the police force was more characteristic than the mobilization of the firefighting force. In particular, it was found that the initial ignition and combustion expansion were caused by paper, wood, and hay. Fires caused by sparks and sparks occurred most frequently on Saturdays and Sundays, and initial ignition and combustion expansion were found to be caused by paper, wood, and hay. In particular, it showed the characteristic that it occurred in the place farthest from the fire station. The common characteristic of all ignition heat sources was that the fire occurred most frequently in the afternoon time, and the fire type was predominantly the building structure fire, and only the ignition point was burned the most. Conclusion: In order to prevent fire and minimize damage, it is necessary to analyze the tendency of fire occurrence and to prepare appropriate preparations according to the fire occurrence factors. In order to analyze the characteristics of fire occurrence using public data in the future, it is necessary to standardize disaster data and to open and activate data.