• Title/Summary/Keyword: co occurrence

Search Result 1,063, Processing Time 0.028 seconds

A Content Analysis of Journal Articles Using the Language Network Analysis Methods (언어 네트워크 분석 방법을 활용한 학술논문의 내용분석)

  • Lee, Soo-Sang
    • Journal of the Korean Society for information Management
    • /
    • v.31 no.4
    • /
    • pp.49-68
    • /
    • 2014
  • The purpose of this study is to perform content analysis of research articles using the language network analysis method in Korea and catch the basic point of the language network analysis method. Six analytical categories are used for content analysis: types of language text, methods of keyword selection, methods of forming co-occurrence relation, methods of constructing network, network analytic tools and indexes. From the results of content analysis, this study found out various features as follows. The major types of language text are research articles and interview texts. The keywords were selected from words which are extracted from text content. To form co-occurrence relation between keywords, there use the co-occurrence count. The constructed networks are multiple-type networks rather than single-type ones. The network analytic tools such as NetMiner, UCINET/NetDraw, NodeXL, Pajek are used. The major analytic indexes are including density, centralities, sub-networks, etc. These features can be used to form the basis of the language network analysis method.

Effects of Smoking, Drinking and Drug use on the Adolescent's Suicidal Ideation by using the Data of the Korea Youth Risk Behavior Web-based Survey through from 2008 to 2014 (2008~2014년까지 청소년건강행태 온라인조사를 활용하여 흡연·음주·약물사용이 청소년 자살생각에 미치는 영향)

  • Jeon, Hae Seong
    • Journal of the Korean Society of School Health
    • /
    • v.28 no.2
    • /
    • pp.99-110
    • /
    • 2015
  • Purpose: This study aims to investigate the association between suicidal thoughts and the co-occurrence of alcohol, tobacco, and drug use among adolescents. Methods: This study used the data of the Korea Youth Risk Behavior Web-based Survey from 2008 through 2014. The subjects of this study were 517,866 students, in total (Male 266,500, Female 251,366). Frequency analysis was conducted on the data about the subjects' general characteristics and their experience of smoking, drinking, and drug use. The relationship between suicidal thoughts and the co-occurrence of alcohol, tobacco, and drug use was analyzed through ${\chi}^2-test$ and logistic regression. The analyses were done using SAS 9.4. Results: According to the study, adolescents who used alcohol, cigarettes, and drugs at the same time engaged in suicidal ideation 3.69 times more than their peers who didn't use such substances (95% CI: 3.40~4.00, p<.001). Also, adolescents who used only tobacco, only alcohol, and only drugs engaged in suicidal ideation 1.49 times (95% CI: 1.43~1.56, p<.001), 1.28 times (95% CI: 1.26~1.31, p<.001) and 2.34 times (95% CI: 2.04~2.69, p<.001) more than the students who didn't use any substances, respectively. Conclusion: Adolescents' suicidal ideation and the co-occurrence of alcohol, tobacco, and drug use had a statistically significant relationship.

Non-Parametric Texture Extraction using Neural Network (신경 회로망을 사용한 비 파라메테 텍스춰 추출)

  • Jeon, Dong-Keun;Hong, Sun-Pyo;Song, Ja-Yoon;Kim, Sang-Jin;Kim, Ki-Jun;Kim, Song-Chol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.5-11
    • /
    • 1995
  • In this paper, a method using a neural network was applied for the purpose of urilizing spatial features. The adopted model of neural network the three-layered architecture, and the training algorithm is the back-propagation algorithm. Co-occurrence matrix which is generated from original imge was used for imput pattern to the neural network in order to tolerate variations of patterns like rotation of displacement. Co-occurrence matrix is explained in appendix. To evaluate this method, classification was executed with this method and texture features method over the city area and sand area, which cannot be separated with the conventional method mentioned aboved. In the results of this method and texture features proposed by Haralick the method using texture features was separation rate of 67%~89%. On the contrary, the method using neural network proposed in this research was stable and high separation rate of 80%~98%.

  • PDF

A Method for Detection and Correction of Pseudo-Semantic Errors Due to Typographical Errors (철자오류에 기인한 가의미 오류의 검출 및 교정 방법)

  • Kim, Dong-Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.173-182
    • /
    • 2013
  • Typographical mistakes made in the writing process of drafts of electronic documents are more common than any other type of errors. The majority of these errors caused by mistyping are regarded as consequently still typo-errors, but a considerable number of them are developed into the grammatical errors and the semantic errors. Pseudo semantic errors among these errors due to typographical errors have more noticeable peculiarities than pure semantic errors between senses of surrounding context words within a sentence. These semantic errors can be detected and corrected by simple algorithm based on the co-occurrence frequency because of their prominent contextual discrepancy. I propose a method for detection and correction based on the co-occurrence frequency in order to detect semantic errors due to typo-errors. The co-occurrence frequency in proposed method is counted for only words with immediate dependency relation, and the cosine similarity measure is used in order to detect pseudo semantic errors. From the presented experimental results, the proposed method is expected to help improve the detecting rate of overall proofreading system by about 2~3%.

A Performance Improvement of GLCM Based on Nonuniform Quantization Method (비균일 양자화 기법에 기반을 둔 GLCM의 성능개선)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.133-138
    • /
    • 2015
  • This paper presents a performance improvement of gray level co-occurrence matrix(GLCM) based on the nonuniform quantization, which is generally used to analyze the texture of images. The nonuniform quantization is given by Lloyd algorithm of recursive technique by minimizing the mean square error. The nonlinear intensity levels by performing nonuniformly the quantization of image have been used to decrease the dimension of GLCM, that is applied to reduce the computation loads as a results of generating the GLCM and calculating the texture parameters by using GLCM. The proposed method has been applied to 30 images of $120{\times}120$ pixels with 256-gray level for analyzing the texture by calculating the 6 parameters, such as angular second moment, contrast, variance, entropy, correlation, inverse difference moment. The experimental results show that the proposed method has a superior computation time and memory to the conventional 256-level GLCM method without performing the quantization. Especially, 16-gray level by using the nonuniform quantization has the superior performance for analyzing textures to another levels of 48, 32, 12, and 8 levels.

Association rule thresholds of similarity measures considering negative co-occurrence frequencies (동시 비 발생 빈도를 고려한 유사성 측도의 연관성 규칙 평가 기준 활용 방안)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1113-1121
    • /
    • 2011
  • Recently, a variety of data mining techniques has been applied in various fields like healthcare, insurance, and internet shopping mall. Association rule mining is a popular and well researched method for discovering interesting relations among large set of data items. Association rule mining is the method to quantify the relationship between each set of items in very huge database based on the association thresholds. There are three primary quality measures for association rules; support and confidence and lift. In this paper we consider some similarity measures with negative co-occurrence frequencies which is widely used in cluster analysis or multi-dimensional analysis as association thresholds. The comparative studies with support, confidence and some similarity measures are shown by numerical example.

A Ranking Method for Improving Performance of Entropy Coding in Gray-Level Images (그레이레벨 이미지에서의 엔트로피 코딩 성능 향상을 위한 순위 기법)

  • You, Kang-Soo;Sim, Chun-Bo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.707-715
    • /
    • 2008
  • This paper proposes an algorithm for efficient compression gray-level images by entropy encoder. The issue of the proposed method is to replace original data of gray-level images with particular ranked data. For this, first, before encoding a stream of gray-level values in an image, the proposed method counts co-occurrence frequencies for neighboring pixel values. Then, it replaces each pay value with particularly ranked numbers based on the investigated co-occurrence frequencies. Finally, the ranked numbers are transmitted to an entropy encoder. The proposed method improves the performance of existing entropy coding by transforming original gray-level values into rank based images using statistical co-occurrence frequencies of gray-level images. The simulation results, using gray-level images with 8-bits, show that the proposed method can reduce bit rate by up to 37.85% compared to existing conventional entropy coders.

Mechanical Fault Classification of an Induction Motor using Texture Analysis (질감 분석을 이용한 유도 전동기의 기계적 결함 분류)

  • Jang, Won-Chul;Park, Yong-Hoon;Kang, Myeong-Su;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.11-19
    • /
    • 2013
  • This paper proposes an algorithm using vibration signals and texture analysis for mechanical fault diagnosis of an induction motor. We analyze characteristics of contrast and pattern of an image converted from vibration signal and extract three texture features using gray-level co-occurrence model(GLCM). Then, the extracted features are used as inputs of a multi-level support vector machine(MLSVM) which utilizes the radial basis function(RBF) kernel function to classify each fault type. In addition, we evaluate the classification performance with varying the parameter from 0.3 to 1.0 for the RBF kernel function of MLSVM, and the proposed algorithm achieved 100% classification accuracy with the parameter of the RBF from 0.3 to 1.0. Moreover, the proposed algorithm achieved about 98% classification accuracy with 15dB and 20dB noise inserted vibration signals.

Detection of Cropland in Reservoir Area by Using Supervised Classification of UAV Imagery Based on GLCM (GLCM 기반 UAV 영상의 감독분류를 이용한 저수구역 내 농경지 탐지)

  • Kim, Gyu Mun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.433-442
    • /
    • 2018
  • The reservoir area is defined as the area surrounded by the planned flood level of the dam or the land under the planned flood level of the dam. In this study, supervised classification based on RF (Random Forest), which is a representative machine learning technique, was performed to detect cropland in the reservoir area. In order to classify the cropland in the reservoir area efficiently, the GLCM (Gray Level Co-occurrence Matrix), which is a representative technique to quantify texture information, NDWI (Normalized Difference Water Index) and NDVI (Normalized Difference Vegetation Index) were utilized as additional features during classification process. In particular, we analyzed the effect of texture information according to window size for generating GLCM, and suggested a methodology for detecting croplands in the reservoir area. In the experimental result, the classification result showed that cropland in the reservoir area could be detected by the multispectral, NDVI, NDWI and GLCM images of UAV, efficiently. Especially, the window size of GLCM was an important parameter to increase the classification accuracy.

Co-occurrence Based Drug-disease Relationship Inference with Genes as Mediators (유전자를 중간 매개로 고려한 동시발생 기반의 약물-질병 관계 추론)

  • Shin, Sangwon;Sin, Yeeun;Jang, Giup;Yoo, Youngmi
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.1-9
    • /
    • 2018
  • Drug repositioning is to discover new uses of drugs. Text mining derives knowledge from unstructured text. We propose a method to predict new drug-disease relationships by taking into account the rate of frequency of genes simultaneously measured in disease-gene and gene-drug. Co-occurrence of drug-gene and gene-disease in the biological literature is counted and calculate the rate of the gene for each drug and disease. Weights of drug-disease relationships are calculated using the average of the rates of genes that are measured and used to measure the accuracy for each disease. In measuring drug-disease relationships, a more accurate identification of relationships was shown by measuring the frequency on a sentence and considering multiple relationships than existing method.