• Title/Summary/Keyword: clusters : membership

Search Result 64, Processing Time 0.02 seconds

Improved FCM Algorithm using Entropy-based Weight and Intercluster (엔트로피 기반의 가중치와 분포크기를 이용한 향상된 FCM 알고리즘)

  • Kwak Hyun-Wook;Oh Jun-Taek;Sohn Young-Ho;Kim Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.1-8
    • /
    • 2006
  • This paper proposes an improved FCM(Fuzzy C-means) algorithm using intercluster and entropy-based weight in gray image. The fuzzy clustering methods have been extensively used in the image segmentation since it extracts feature information of the region. Most of fuzzy clustering methods have used the FCM algorithm. But, FCM algorithm is still sensitive to noise, as it does not include spatial information. In addition, it can't correctly classify pixels according to the feature-based distributions of clusters. To solve these problems, we applied a weight and intercluster to the traditional FCM algorithm. A weight is obtained from the entropy information based on the cluster's number of neighboring pixels. And a membership for one pixel is given based on the information considering the feature-based intercluster. Experiments has confirmed that the proposed method was more tolerant to noise and superior to existing methods.

Study of galaxies in extensive area of the Virgo cluster

  • Kim, Suk;Rey, Soo-Chang;Sung, Eon-Chang;Jerjen, Helmut;Lisker, Thorsten;Lee, Youngdae;Chung, Jiwon;Lee, Woong;Chung, Aeree;Yoon, Hyein
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.35.1-35.1
    • /
    • 2016
  • Nearby galaxy clusters and their surrounding regions represent the current endpoint of evolution galaxy cluster evolution. We present a new catalog of 1589 galaxies, what we call Extended Virgo Cluster Catalog (EVCC), in wider area of the Virgo cluster based on the Sloan Digital Sky Survey (SDSS) Data Release 7. The EVCC covers an area 5.2 times larger than the footprint of the classical Virgo Cluster Catalog, and reaches out to 3.5 times the virial radius of the Virgo cluster. The EVCC contains fundamental information such as membership, morphology, and photometric parameters of galaxies. The EVCC defines a comprehensive galaxy sample covering a wider range in galaxy density that is significantly different from the inner region of the Virgo cluster. It will be the foundation for forthcoming galaxy evolution studies in the extended Virgo cluster region, complementing ongoing and planned Virgo cluster surveys at various wavelengths. We also present the large scale structures in the field around the Virgo cluster. We identified seven galaxy filaments and one possible sheet in three dimensions of super-galactic coordinates based on the HyperLEDA database. By examining spatial distribution and Hubble diagram of galaxies, we found that six filaments are directly associated with the main body of the Virgo cluster. On the other hand, one filament and one sheet are structures located at background of the main body of Virgo cluster. The EVCC and the filament structures will be the foundation for forthcoming studies of galaxy evolution in various environments as well as buildup of the galaxy cluster at z ~ 0, complementing ongoing and planned Virgo cluster surveys at various wavelengths.

  • PDF

Identification Methodology of FCM-based Fuzzy Model Using Particle Swarm Optimization (입자 군집 최적화를 이용한 FCM 기반 퍼지 모델의 동정 방법론)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Son, Myung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.184-192
    • /
    • 2011
  • In this study, we introduce a identification methodology for FCM-based fuzzy model. The two underlying design mechanisms of such networks involve Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on FCM clustering method for efficient processing of data and the optimization of model was carried out using PSO. The premise part of fuzzy rules does not construct as any fixed membership functions such as triangular, gaussian, ellipsoidal because we build up the premise part of fuzzy rules using FCM. As a result, the proposed model can lead to the compact architecture of network. In this study, as the consequence part of fuzzy rules, we are able to use four types of polynomials such as simplified, linear, quadratic, modified quadratic. In addition, a Weighted Least Square Estimation to estimate the coefficients of polynomials, which are the consequent parts of fuzzy model, can decouple each fuzzy rule from the other fuzzy rules. Therefore, a local learning capability and an interpretability of the proposed fuzzy model are improved. Also, the parameters of the proposed fuzzy model such as a fuzzification coefficient of FCM clustering, the number of clusters of FCM clustering, and the polynomial type of the consequent part of fuzzy rules are adjusted using PSO. The proposed model is illustrated with the use of Automobile Miles per Gallon(MPG) and Boston housing called Machine Learning dataset. A comparative analysis reveals that the proposed FCM-based fuzzy model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

A Comparative Study on Clustering Methods for Grouping Related Tags (연관 태그의 군집화를 위한 클러스터링 기법 비교 연구)

  • Han, Seung-Hee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.43 no.3
    • /
    • pp.399-416
    • /
    • 2009
  • In this study, clustering methods with related tags were discussed for improving search and exploration in the tag space. The experiments were performed on 10 Delicious tags and the strongly-related tags extracted by each 300 documents, and hierarchical and non-hierarchical clustering methods were carried out based on the tag co-occurrences. To evaluate the experimental results, cluster relevance was measured. Results showed that Ward's method with cosine coefficient, which shows good performance to term clustering, was best performed with consistent clustering tendency. Furthermore, it was analyzed that cluster membership among related tags is based on users' tagging purposes or interest and can disambiguate word sense. Therefore, tag clusters would be helpful for improving search and exploration in the tag space.