• Title/Summary/Keyword: clusters : membership

Search Result 64, Processing Time 0.031 seconds

A Fuzzy Rule Extraction by EM Algorithm and A Design of Temperature Control System (EM 알고리즘에 의한 퍼지 규칙생성과 온도 제어 시스템의 설계)

  • 오범진;곽근창;유정웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.104-111
    • /
    • 2002
  • This paper presents a fuzzy rule extraction method using EM(Expectation-Maximization) algorithm and a design method of adaptive neuro-fuzzy control. EM algorithm is used to estimate a maximum likelihood of a GMM(Gaussian Mixture Model) and cluster centers. The estimated clusters is used to automatically construct the fuzzy rules and membership functions for ANFIS(Adaptive Neuro-Fuzzy Inference System). Finally, we applied the proposed method to the water temperature control system and obtained better results with respect to the number of rules and SAE(Sum of Absolute Error) than previous techniques such as conventional fuzzy controller.

A genetic algorithm for generating optimal fuzzy rules (퍼지 규칙 최적화를 위한 유전자 알고리즘)

  • 임창균;정영민;김응곤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.767-778
    • /
    • 2003
  • This paper presents a method for generating optimal fuzzy rules using a genetic algorithm. Fuzzy rules are generated from the training data in the first stage. In this stage, fuzzy c-Means clustering method and cluster validity are used to determine the structure and initial parameters of the fuzzy inference system. A cluster validity is used to determine the number of clusters, which can be the number of fuzzy rules. Once the structure is figured out in the first stage, parameters relating the fuzzy rules are optimized in the second stage. Weights and variance parameters are tuned using genetic algorithms. Variance parameters are also managed with left and right for asymmetrical Gaussian membership function. The method ensures convergence toward a global minimum by using genetic algorithms in weight and variance spaces.

Image Segmentation Based on the Fuzzy Clustering Algorithm using Average Intracluster Distance (평균내부거리를 적용한 퍼지 클러스터링 알고리즘에 의한 영상분할)

  • You, Hyu-Jai;Ahn, Kang-Sik;Cho, Seok-Je
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.9
    • /
    • pp.3029-3036
    • /
    • 2000
  • Image segmentation is one of the important processes in the image information extraction for computer vision systems. The fuzzy clustering methods have been extensively used in the image segmentation because it extracts feature information of the region. Most of fuzzy clustering methods have used the Fuzzy C-means(FCM) algorithm. This algorithm can be misclassified about the different size of cluster because the degree of membership depends on highly the distance between data and the centroids of the clusters. This paper proposes a fuzzy clustering algorithm using the Average Intracluster Distance that classifies data uniformly without regard to the size of data sets. The Average Intracluster Distance takes an average of the vector set belong to each cluster and increases in exact proportion to its size and density. The experimental results demonstrate that the proposed approach has the g

  • PDF

The Design of Granular-based Radial Basis Function Neural Network by Context-based Clustering (Context-based 클러스터링에 의한 Granular-based RBF NN의 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1230-1237
    • /
    • 2009
  • In this paper, we develop a design methodology of Granular-based Radial Basis Function Neural Networks(GRBFNN) by context-based clustering. In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The output space is granulated making use of the K-Means clustering while the input space is clustered with the aid of a so-called context-based fuzzy clustering. The number of information granules produced for each context is adjusted so that we satisfy a certain reconstructability criterion that helps us minimize an error between the original data and the ones resulting from their reconstruction involving prototypes of the clusters and the corresponding membership values. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the values of the context and the prototypes in the input space. The other parameters of these local functions are subject to further parametric optimization. Numeric examples involve some low dimensional synthetic data and selected data coming from the Machine Learning repository.

Hybrid Neural Classifier Combined with H-ART2 and F-LVQ for Face Recognition

  • Kim, Do-Hyeon;Cha, Eui-Young;Kim, Kwang-Baek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1287-1292
    • /
    • 2005
  • This paper presents an effective pattern classification model by designing an artificial neural network based pattern classifiers for face recognition. First, a RGB image inputted from a frame grabber is converted into a HSV image which is similar to the human beings' vision system. Then, the coarse facial region is extracted using the hue(H) and saturation(S) components except intensity(V) component which is sensitive to the environmental illumination. Next, the fine facial region extraction process is performed by matching with the edge and gray based templates. To make a light-invariant and qualified facial image, histogram equalization and intensity compensation processing using illumination plane are performed. The finally extracted and enhanced facial images are used for training the pattern classification models. The proposed H-ART2 model which has the hierarchical ART2 layers and F-LVQ model which is optimized by fuzzy membership make it possible to classify facial patterns by optimizing relations of clusters and searching clustered reference patterns effectively. Experimental results show that the proposed face recognition system is as good as the SVM model which is famous for face recognition field in recognition rate and even better in classification speed. Moreover high recognition rate could be acquired by combining the proposed neural classification models.

  • PDF

Ultraviolet Properties of Dwarf Galaxies in the Ursa Major Cluster

  • Pak, Min-A;Rey, Soo-Chang;Kim, Suk;Lee, Young-Dae;Yi, Won-Hyeong;Sung, Eon-Chang;Kyung, Jae-Mann
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.41.2-41.2
    • /
    • 2010
  • We present ultraviolet (UV) properties of dwarf galaxies in the Ursa Major cluster comparing with those in the Virgo cluster. We have constructed SDSS DR7/GALEX GR5 matched optical/UV catalog for dwarf galaxies with various morphologies in these two clusters. Membership of galaxies belonging to the Ursa Major cluster was made by hierarchical grouping method using SDSS spectroscopic data. We classified morphologies of dwarf galaxies using the combination of visual inspection of the images and spectral features returned from SDSS data. In contrast to the case of the Virgo cluster, majority of dwarf galaxies in the Ursa Major cluster lies in the blue cloud of the UV color-magnitude relations (CMRs) implying strong recent or on-going star formation. We discuss the cluster environment on the star formation history and evolution of dwarf galaxies.

  • PDF

An Automatic Fuzzy Rule Extraction using CFCM and Fuzzy Equalization Method (CFCM과 퍼지 균등화를 이용한 퍼지 규칙의 자동 생성)

  • 곽근창;이대종;유정웅;전명근
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.194-202
    • /
    • 2000
  • In this paper, an efficient fuzzy rule generation scheme for Adaptive Network-based Fuzzy Inference System(ANFIS) using the conditional fuzzy-means(CFCM) and fuzzy equalization(FE) methods is proposed. Usually, the number of fuzzy rules exponentially increases by applying the gird partitioning of the input space, in conventional ANFIS approaches. Therefore, CFCM method is adopted to render the clusters which represent the given input and output fuzzy and FE method is used to automatically construct the fuzzy membership functions. From this, one can systematically obtain a small size of fuzzy rules which shows satisfying performance for the given problems. Finally, we applied the proposed method to the truck backer-upper control and Box-Jenkins modeling problems and obtained a better performance than previous works.

  • PDF

Spatial Focalization of Zen-Meditation Brain Based on EEG

  • Liu, Chuan-Yi;Lo, Pei-Chen
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • The aim of this paper is to report our preliminary results of investigating the spatial focalization of Zen-meditation EEG (electroencephalograph) in alpha band (8-13 Hz). For comparison, the study involved two groups of subjects, practitioners (experimental group) and non-practitioners (control group). To extract EEG alpha rhythm, wavelet analysis was applied to multi-channel EEG signals. Normalized alpha-power vectors were then constructed from spatial distribution of alpha powers, that were classified by Fuzzy C-means based algorithm to explore various brain spatial characteristics during meditation (or, at rest). Optimal number of clusters was determined by correlation coefficients of the membership-value vectors of each cluster center. Our results show that, in the experimental group, the incidence of frontal alpha activity varied in accordance with the meditation stage. The results demonstrated three different spatiotemporal modules consisting with three distinctive meditation stages normally recognized by meditation practitioners. The frontal alpha activity in two groups decreased in different ways. Particularly, monotonic decline was observed in the control group, and the experimental group showed increasing results. The phenomenon might imply various mechanisms employed by meditation and relaxation in modulating parietal alpha.

Probabilistic reduced K-means cluster analysis (확률적 reduced K-means 군집분석)

  • Lee, Seunghoon;Song, Juwon
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.905-922
    • /
    • 2021
  • Cluster analysis is one of unsupervised learning techniques used for discovering clusters when there is no prior knowledge of group membership. K-means, one of the commonly used cluster analysis techniques, may fail when the number of variables becomes large. In such high-dimensional cases, it is common to perform tandem analysis, K-means cluster analysis after reducing the number of variables using dimension reduction methods. However, there is no guarantee that the reduced dimension reveals the cluster structure properly. Principal component analysis may mask the structure of clusters, especially when there are large variances for variables that are not related to cluster structure. To overcome this, techniques that perform dimension reduction and cluster analysis simultaneously have been suggested. This study proposes probabilistic reduced K-means, the transition of reduced K-means (De Soete and Caroll, 1994) into a probabilistic framework. Simulation shows that the proposed method performs better than tandem clustering or clustering without any dimension reduction. When the number of the variables is larger than the number of samples in each cluster, probabilistic reduced K-means show better formation of clusters than non-probabilistic reduced K-means. In the application to a real data set, it revealed similar or better cluster structure compared to other methods.

Fuzzy Clustering Model using Principal Components Analysis and Naive Bayesian Classifier (주성분 분석과 나이브 베이지안 분류기를 이용한 퍼지 군집화 모형)

  • Jun, Sung-Hae
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.485-490
    • /
    • 2004
  • In data representation, the clustering performs a grouping process which combines given data into some similar clusters. The various similarity measures have been used in many researches. But, the validity of clustering results is subjective and ambiguous, because of difficulty and shortage about objective criterion of clustering. The fuzzy clustering provides a good method for subjective clustering problems. It performs clustering through the similarity matrix which has fuzzy membership value for assigning each object. In this paper, for objective fuzzy clustering, the clustering algorithm which joins principal components analysis as a dimension reduction model with bayesian learning as a statistical learning theory. For performance evaluation of proposed algorithm, Iris and Glass identification data from UCI Machine Learning repository are used. The experimental results shows a happy outcome of proposed model.