• Title/Summary/Keyword: clustering techniques

Search Result 528, Processing Time 0.024 seconds

A Conditional Clustering Scheme for Hybrid NOMA in Millimeter Wave Communication System

  • Nguyen, Thanh Ngoc;Jeon, Taehyun
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.34-39
    • /
    • 2019
  • Millimeter-wave (mmWave) and Non-orthogonal multiple access (NOMA) are expected to be the major techniques that lead to the next generation wireless communication. NOMA provides a high spectrum efficiency by sharing of spatial resources among users in the same frequency band. Meanwhile, millimeter-wave gives a huge underutilized bandwidth at extremely high frequency band (EHF) which covers 30GHz to 300GHz. These techniques have been proven in several recent literatures to achieve high data rates. The combination of NOMA and millimeter-wave techniques further improves average sum capacities, as well as reduces the interference compared to conventional wireless communication systems. In this paper, we focus on hybrid NOMA system working in millimeter-wave frequency. We propose a clustering algorithm used for a hybrid NOMA scheme to optimize the usage of wireless resources. The proposed clustering algorithm adds several conditions in grouping users and defining clusters to increase the probability of the successful superposition decoding process. The performance of the proposed clustering algorithm is investigated in hybrid NOMA system and compared with the conventional orthogonal multiple access (OMA) scheme.

A Study on a Statistical Matching Method Using Clustering for Data Enrichment

  • Kim Soon Y.;Lee Ki H.;Chung Sung S.
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.509-520
    • /
    • 2005
  • Data fusion is defined as the process of combining data and information from different sources for the effectiveness of the usage of useful information contents. In this paper, we propose a data fusion algorithm using k-means clustering method for data enrichment to improve data quality in knowledge discovery in database(KDD) process. An empirical study was conducted to compare the proposed data fusion technique with the existing techniques and shows that the newly proposed clustering data fusion technique has low MSE in continuous fusion variables.

Development of Similarity-Based Document Clustering System (유사성 계수에 의한 문서 클러스터링 시스템 개발)

  • Woo Hoon-Shik;Yim Dong-Soon
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.119-124
    • /
    • 2002
  • Clustering of data is of a great interest in many data mining applications. In the field of document clustering, a document is represented as a data in a high dimensional space. Therefore, the document clustering can be accomplished with a general data clustering techniques. In this paper, we introduce a document clustering system based on similarity among documents. The developed system consists of three functions: 1) gatherings documents utilizing a search agent; 2) determining similarity coefficients between any two documents from term frequencies; 3) clustering documents with similarity coefficients. Especially, the document clustering is accomplished by a hybrid algorithm utilizing genetic and K-Means methods.

  • PDF

A Fusion of Data Mining Techniques for Predicting Movement of Mobile Users

  • Duong, Thuy Van T.;Tran, Dinh Que
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.568-581
    • /
    • 2015
  • Predicting locations of users with portable devices such as IP phones, smart-phones, iPads and iPods in public wireless local area networks (WLANs) plays a crucial role in location management and network resource allocation. Many techniques in machine learning and data mining, such as sequential pattern mining and clustering, have been widely used. However, these approaches have two deficiencies. First, because they are based on profiles of individual mobility behaviors, a sequential pattern technique may fail to predict new users or users with movement on novel paths. Second, using similar mobility behaviors in a cluster for predicting the movement of users may cause significant degradation in accuracy owing to indistinguishable regular movement and random movement. In this paper, we propose a novel fusion technique that utilizes mobility rules discovered from multiple similar users by combining clustering and sequential pattern mining. The proposed technique with two algorithms, named the clustering-based-sequential-pattern-mining (CSPM) and sequential-pattern-mining-based-clustering (SPMC), can deal with the lack of information in a personal profile and avoid some noise due to random movements by users. Experimental results show that our approach outperforms existing approaches in terms of efficiency and prediction accuracy.

Customer Load Pattern Analysis using Clustering Techniques (클러스터링 기법을 이용한 수용가별 전력 데이터 패턴 분석)

  • Ryu, Seunghyoung;Kim, Hongseok;Oh, Doeun;No, Jaekoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.61-69
    • /
    • 2016
  • Understanding load patterns and customer classification is a basic step in analyzing the behavior of electricity consumers. To achieve that, there have been many researches about clustering customers' daily load data. Nowadays, the deployment of advanced metering infrastructure (AMI) and big-data technologies make it easier to study customers' load data. In this paper, we study load clustering from the view point of yearly and daily load pattern. We compare four clustering methods; K-means clustering, hierarchical clustering (average & Ward's method) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise). We also discuss the relationship between clustering results and Korean Standard Industrial Classification that is one of possible labels for customers' load data. We find that hierarchical clustering with Ward's method is suitable for clustering load data and KSIC can be well characterized by daily load pattern, but not quite well by yearly load pattern.

A Study On Predicting Stock Prices Of Hallyu Content Companies Using Two-Stage k-Means Clustering (2단계 k-평균 군집화를 활용한 한류컨텐츠 기업 주가 예측 연구)

  • Kim, Jeong-Woo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.169-179
    • /
    • 2021
  • This study shows that the two-stage k-means clustering method can improve prediction performance by predicting the stock price, To this end, this study introduces the two-stage k-means clustering algorithm and tests the prediction performance through comparison with various machine learning techniques. It selects the cluster close to the prediction target obtained from the k-means clustering, and reapplies the k-means clustering method to the cluster to search for a cluster closer to the actual value. As a result, the predicted value of this method is shown to be closer to the actual stock price than the predicted values of other machine learning techniques. Furthermore, it shows a relatively stable predicted value despite the use of a relatively small cluster. Accordingly, this method can simultaneously improve the accuracy and stability of prediction, and it can be considered as the new clustering method useful for small data. In the future, developing the two-stage k-means clustering is required for the large-scale data application.

Identification of Plastic Wastes by Using Fuzzy Radial Basis Function Neural Networks Classifier with Conditional Fuzzy C-Means Clustering

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1872-1879
    • /
    • 2016
  • The techniques to recycle and reuse plastics attract public attention. These public attraction and needs result in improving the recycling technique. However, the identification technique for black plastic wastes still have big problem that the spectrum extracted from near infrared radiation spectroscopy is not clear and is contaminated by noise. To overcome this problem, we apply Raman spectroscopy to extract a clear spectrum of plastic material. In addition, to improve the classification ability of fuzzy Radial Basis Function Neural Networks, we apply supervised learning based clustering method instead of unsupervised clustering method. The conditional fuzzy C-Means clustering method, which is a kind of supervised learning based clustering algorithms, is used to determine the location of radial basis functions. The conditional fuzzy C-Means clustering analyzes the data distribution over input space under the supervision of auxiliary information. The auxiliary information is defined by using k Nearest Neighbor approach.

An Effective Clustering Procedure for Quantitative Data and Its Application for the Grouping of the Reusable Nuclear Fuel (정량적 자료에 대한 효과적인 군집화 과정 및 사용 후 핵연료의 분류에의 적용)

  • Jing, Jin-Xi;Yoon, Bok-Sik;Lee, Yong-Joo
    • IE interfaces
    • /
    • v.15 no.2
    • /
    • pp.182-188
    • /
    • 2002
  • Clustering is widely used in various fields in order to investigate structural characteristics of the given data. One of the main tasks of clustering is to partition a set of objects into homogeneous groups for the purpose of data reduction. In this paper a simple but computationally efficient clustering procedure is devised and some statistical techniques to validate its clustered results are discussed. In the given procedure, the proper number of clusters and the clustered groups can be determined simultaneously. The whole procedure is applied to a practical clustering problem for the classification of reusable fuels in nuclear power plants.

Web Document Clustering based on Graph using Hyperlinks (하이퍼링크를 이용한 그래프 기반의 웹 문서 클러스터링)

  • Lee, Joon;Kang, Jin-Beom;Choi, Joong-Min
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.590-595
    • /
    • 2009
  • With respect to the exponential increment of web documents on the internet, it is important how to improve performance of clustering method for web documents. Web document clustering techniques can offer accurate information and fast information retrieval by clustering web documents through semantic relationship. The clustering method based on mesh-graph provides high recall by calculating similarity for documents, but it requires high computation cost. This paper proposes a clustering method using hyperlinks which is structural feature of web documents in order to keep effectiveness and reduce computation cost.

  • PDF

Regional Grouping of Transmission System Using the Sequential Clustering Technique (순차적 클러스터링기법을 이용한 송전 계통의 지역별 그룹핑)

  • Kim, Hyun-Houng;Lee, Woo-Nam;Park, Jong-Bae;Shin, Joong-Rin;Kim, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.911-917
    • /
    • 2009
  • This paper introduces a sequential clustering technique as a tool for an effective grouping of transmission systems. The interconnected network system retains information about the location of each line. With this information, this paper aims to carry out initial clustering through the transmission usage rate, compare the similarity measures of regional information with the similarity measures of location price, and introduce the techniques of the clustering method. This transmission usage rate uses power flow based on congestion costs and similarity measurements using the FCM(Fuzzy C-Mean) algorithm. This paper also aims to prove the propriety of the proposed clustering method by comparing it with existing clustering methods that use the similarity measurement system. The proposed algorithm is demonstrated through the IEEE 39-bus RTS and Korea power system.