• Title/Summary/Keyword: clustering modeling

Search Result 257, Processing Time 0.032 seconds

기계학습 클러스터링을 이용한 승하차 패턴에 따른 서울시 지하철역 분류 (Classification of Seoul Metro Stations Based on Boarding/ Alighting Patterns Using Machine Learning Clustering)

  • 민미경
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권4호
    • /
    • pp.13-18
    • /
    • 2018
  • 본 연구에서는 기계학습을 이용하여 서울시 지하철역의 승하차 패턴에 따라 지하철역을 분류한다. 대상 데이터는 공공데이터 포탈에서 제공하는 2008년부터 2017년까지 서울 지하철 233개 역에서의 매일 매시간별 승차객 숫자와 하차객 숫자이다. 기계학습 기법으로는 가우시안 혼합 모델(GMM)과 K-평균 클러스터링을 사용한다. 이용객의 승차시간과 하차시간의 분포는 가우시안 혼합 모델로 모델링할 수 있으며, 이를 K-평균 클러스터링을 이용하여 비지도 학습시킨다. 학습결과 서울시 지하철역은 승하차 패턴에 따라 4개의 그룹으로 분류되었다. 본 연구의 결과는 서울시 지하철역의 특성을 파악하여 경제, 사회, 문화적으로 분석하기 위한 주요 기반 지식으로 활용될 수 있다. 본 연구의 방법은 클러스터링이 필요한 모든 공공데이터나 빅데이터에 적용할 수 있다.

비선형 공정을 위한 FCM 클러스터링 알고리즘 기반 퍼지 추론 시스템 (Fuzzy Inference Systems Based on FCM Clustering Algorithm for Nonlinear Process)

  • 박건준;강형길;김용갑
    • 한국정보전자통신기술학회논문지
    • /
    • 제5권4호
    • /
    • pp.224-231
    • /
    • 2012
  • 본 논문에서는 비선형 공정을 퍼지 모델링하기 위해 FCM 클러스터링 알고리즘을 기반으로 하는 퍼지 추론 시스템을 소개한다. 비선형 공정에 대한 퍼지 규칙의 생성은 일반적으로 차원이 증가할수록 규칙의 수가 지수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해, FCM 클러스터링 알고리즘을 이용하여 입력 공간을 분산 형태로 분할함으로써 퍼지 모델의 규칙을 생성한다. 퍼지 규칙의 전반부 파라미터는 FCM 클러스터링 알고리즘에 의한 소속행렬로 결정된다. 퍼지 규칙의 후반부는 다항식 함수의 형태로 표현되며, 각 규칙의 후반부 파라미터들은 표준 최소자승법에 의해 동정된다. 마지막으로, 비선형 공정의 특성 및 성능을 평가하기 위하여 비선형 공정으로는 널리 이용되는 데이터를 이용한다.

비정상행위 탐지를 위한 사용자 정상행위 클러스터링 기법 (Clustering Normal User Behavior for Anomaly Intrusion Detection)

  • 오상현;이원석
    • 정보처리학회논문지C
    • /
    • 제10C권7호
    • /
    • pp.857-866
    • /
    • 2003
  • 사용자 비정상 행위를 탐지하기 위해서 기존의 연구들은 주로 통계적 기법을 이용해 왔다. 그러나 이들 연구들은 주로 사용자의 평균적인 행위를 분석하기 때문에 사용자의 비정상행위가 정확하게 탐지될 수 없다. 본 논문에서는 사용자의 정상행위를 모델링하는 새로운 클러스터링 방법을 제안한다. 클러스터링은 분석 환경에서 임의 개수의 빈발 영역을 식별할 수 있기 때문에 통계적 기법에서의 부정확한 모델링 방법을 개선할 수 있다. 빈발 공통 지식은 트랜잭션 단위로 발생되는 유사 데이터 객체들의 빈도수와 각 트랜잭션에 포함된 유사 데이터 객체들의 반복 비율로 나타낼 수 있다. 이와 더불어, 제안된 방법은 공통 지식을 축약된 프로파일로 유지하는 방법을 설명한다. 따라서 생성된 프로파일을 이용하여 온라인 트랜잭션에서의 비정상 행위를 쉽게 탐지할 수 있다.

A deep learning framework for wind pressure super-resolution reconstruction

  • Xiao Chen;Xinhui Dong;Pengfei Lin;Fei Ding;Bubryur Kim;Jie Song;Yiqing Xiao;Gang Hu
    • Wind and Structures
    • /
    • 제36권6호
    • /
    • pp.405-421
    • /
    • 2023
  • Strong wind is the main factors of wind-damage of high-rise buildings, which often creates largely economical losses and casualties. Wind pressure plays a critical role in wind effects on buildings. To obtain the high-resolution wind pressure field, it often requires massive pressure taps. In this study, two traditional methods, including bilinear and bicubic interpolation, and two deep learning techniques including Residual Networks (ResNet) and Generative Adversarial Networks (GANs), are employed to reconstruct wind pressure filed from limited pressure taps on the surface of an ideal building from TPU database. It was found that the GANs model exhibits the best performance in reconstructing the wind pressure field. Meanwhile, it was confirmed that k-means clustering based retained pressure taps as model input can significantly improve the reconstruction ability of GANs model. Finally, the generalization ability of k-means clustering based GANs model in reconstructing wind pressure field is verified by an actual engineering structure. Importantly, the k-means clustering based GANs model can achieve satisfactory reconstruction in wind pressure field under the inputs processing by k-means clustering, even the 20% of pressure taps. Therefore, it is expected to save a huge number of pressure taps under the field reconstruction and achieve timely and accurately reconstruction of wind pressure field under k-means clustering based GANs model.

퍼지추론 방법에 의한 퍼지동정 (Fuzzy identification by means of fuzzy inference method)

  • 안태천;황형수;오성권;김현기;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.200-205
    • /
    • 1993
  • A design method of rule-based fuzzy modeling is presented for the model identification of complex and nonlinear systems. Three kinds of method for fuzzy modeling presented in this paper include simplified inference (type 1), linear inference (type 2), and modified linear inference (type 3). The fuzzy c-means clustering and modified complex methods are used in order to identify the preise structure and parameter of fuzzy implication rules, respectively and the least square method is utilized for the identification of optimal consequence parameters. Time series data for gas funace and sewage treatment processes are used to evaluate the performances of the proposed rule-based fuzzy modeling.

  • PDF

User modeling based on fuzzy category and interest for web usage mining

  • Lee, Si-Hun;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.88-93
    • /
    • 2005
  • Web usage mining is a research field for searching potentially useful and valuable information from web log file. Web log file is a simple list of pages that users refer. Therefore, it is not easy to analyze user's current interest field from web log file. This paper presents web usage mining method for finding users' current interest based on fuzzy categories. We consider not only how many times a user visits pages but also when he visits. We describe a user's current interest with a fuzzy interest degree to categories. Based on fuzzy categories and fuzzy interest degrees, we also propose a method to cluster users according to their interests for user modeling. For user clustering, we define a category vector space. Experiments show that our method properly reflects the time factor of users' web visiting as well as the users' visit number.

Spring Flow Prediction affected by Hydro-power Station Discharge using the Dynamic Neuro-Fuzzy Local Modeling System

  • Hong, Timothy Yoon-Seok;White, Paul Albert.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.58-66
    • /
    • 2007
  • This paper introduces the new generic dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi-Sugeno (TS) type fuzzy inference system for complex dynamic hydrological modeling tasks. The proposed DNFLMS applies a local generalization principle and an one-pass training procedure by using the evolving clustering method to create and update fuzzy local models dynamically and the extended Kalman filtering learning algorithm to optimize the parameters of the consequence part of fuzzy local models. The proposed DNFLMS is applied to develop the inference model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatts Cobb hydropower station on springs flow. It is demonstrated that the proposed DNFLMS is superior in terms of model accuracy, model complexity, and computational efficiency when compared with a multi-layer perceptron trained with the back propagation learning algorithm and well-known adaptive neural-fuzzy inference system, both of which adopt global generalization.

  • PDF

다차원 평면 클러스터를 이용한 자기 구성 퍼지 모델링 (Self-Organizing Fuzzy Modeling Based on Hyperplane-Shaped Clusters)

  • 고택범
    • 제어로봇시스템학회논문지
    • /
    • 제7권12호
    • /
    • pp.985-992
    • /
    • 2001
  • This paper proposes a self-organizing fuzzy modeling(SOFUM)which an create a new hyperplane shaped cluster and adjust parameters of the fuzzy model in repetition. The suggested algorithm SOFUM is composed of four steps: coarse tuning. fine tuning cluster creation and optimization of learning rates. In the coarse tuning fuzzy C-regression model(FCRM) clustering and weighted recursive least squared (WRLS) algorithm are used and in the fine tuning gradient descent algorithm is used to adjust parameters of the fuzzy model precisely. In the cluster creation, a new hyperplane shaped cluster is created by applying multiple regression to input/output data with relatively large fuzzy entropy based on parameter tunings of fuzzy model. And learning rates are optimized by utilizing meiosis-genetic algorithm in the optimization of learning rates To check the effectiveness of the suggested algorithm two examples are examined and the performance of the identified fuzzy model is demonstrated via computer simulation.

  • PDF

Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.101-110
    • /
    • 2003
  • This paper introduces an identification method for nonlinear models in the form of rule-based Fuzzy-Neural Networks (FNN). In this study, the development of the rule-based fuzzy neural networks focuses on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The FNN modeling and identification environment realizes parameter identification through synergistic usage of clustering techniques, genetic optimization and a complex search method. We use a HCM (Hard C-Means) clustering algorithm to determine initial apexes of the membership functions of the information granules used in this fuzzy model. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are then adjusted using the identification algorithm of a GA hybrid scheme. The proposed GA hybrid scheme effectively combines the GA with the improved com-plex method to guarantee both global optimization and local convergence. An aggregate objective function (performance index) with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. According to the selection and adjustment of the weighting factor of this objective function, we reveal how to design a model having sound approximation and generalization abilities. The proposed model is experimented with using several time series data (gas furnace, sewage treatment process, and NOx emission process data from gas turbine power plants).

분산 분할 방식의 퍼지 규칙 생성 및 추론 시스템 (Fuzzy Rules Generation and Inference System of Scatter Partition Method)

  • 박건준;장태수;김성훈;김용갑
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.35-36
    • /
    • 2012
  • 퍼지 모델링을 하기 위해서는 퍼지 규칙의 생성이 필연적이며, 일반적으로 차원이 증가할수록 규칙의 수가 지수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해, 시스템 데이터를 이용하여 입력 공간을 분산 형태로 분할하는 FCM 클러스터링 알고리즘을 기반으로 하여 퍼지 규칙을 생성하고 추론하는 시스템을 소개한다. 퍼지 규칙의 전반부 파라미터는 FCM 클러스터링 알고리즘에 의한 소속행렬로 결정되며 퍼지 규칙의 후반부는 다항식 함수의 형태로 표현된다. 제안된 모델은 수치 데이터를 이용하여 평가한다.

  • PDF