• Title/Summary/Keyword: cluster-galaxies

Search Result 333, Processing Time 0.026 seconds

Unveiling Quenching History of Cluster Galaxies Using Phase-space Analysis

  • Rhee, Jinsu;Smith, Rory;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2019
  • We utilize times since infall of cluster galaxies obtained from Yonsei Zoom-in Cluster Simulation (YZiCS), the cosmological hydrodynamic N-body simulations, and star formation rates from the SDSS data release 10 to study how quickly late-type galaxies are quenched in the cluster environments. In particular, we confirm that the distributions of both simulated and observed galaxies in phase-space diagrams are comparable and that each location of phase-space can provide the information of times since infall and star formation rates of cluster galaxies. Then, by limiting the location of phase-space of simulated and observed galaxies, we associate their star formation rates at z ~ 0.08 with times since infall using an abundance matching technique that employs the 10 quantiles of each probability distribution. Using a flexible quenching model covering different quenching scenarios, we find the star formation history of satellite galaxies that best reproduces the obtained relationship between time since infall and star formation rate at z ~ 0.08. Based on the derived star formation history, we constrain the quenching timescale (2 - 7 Gyr) with a clear stellar mass trend and confirm that the refined model is consistent with the "delayed-then-rapid" quenching scenario: the constant delayed phase as ~ 2.3 Gyr and the quenching efficiencies (i.e., e-folding timescale) outside and inside clusters as ~ 2 - 4 Gyr (${\propto}M_*^{-1}$) and 0.5 - 1.5 Gyr (${\propto}M_*^{-2}$), Finally, we suggest: (i) ram-pressure is the main driver of quenching of satellite galaxies for the local Universe, (ii) the quenching trend on stellar mass at z > 0.5 indicates other quenching mechanisms as the main driver.

  • PDF

Barred Galaxies Are More Abundant in Interacting Clusters: Bar Formation by Cluster-Cluster Interactions

  • Yoon, Yongmin;Im, Myungshin;Lee, Seong-Kook;Lee, Gwang-Ho;Lim, Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.35.1-35.1
    • /
    • 2018
  • Bars are commonly found in disk galaxies. However, how bars form is yet unclear. There are two common pictures for the bar formation mechanism. Bars form through a physical process inherent in galaxies, or through and external process like galaxy-galaxy interaction. In this paper, we present the observational evidence that bars can form from another channel, namely a cluster-cluster interaction. We examined 105 galaxy clusters at 0.015

  • PDF

Environments of Galaxies and Their Effects on Galaxy Properties

  • Yoon, Yongmin;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.38.2-38.2
    • /
    • 2019
  • In the history of universe, galaxies are consistently affected by surrounding medium and neighbor galaxies. These effects control galaxy evolution, making properties of galaxies diverse and dependent on environments. We investigate environments of various types of galaxies and how they affect galaxy properties, such as bar structures and galaxy sizes, etc. First, we present the observational evidence that bars can form from a cluster-cluster interaction. The evidence indicates that bars can form due to a large-scale violent phenomenon, and cluster-cluster interaction should be considered as an important channel for bar formation. Second, we discover for the first time that local early-type galaxies heavier than 1011.2 Msol show a clear environmental dependence in mass-size relation, in such a way that galaxies are as much as 20 - 40% larger in densest environments than in underdense environments. This result suggests that mergers played a significant role in the growth of massive galaxies in dense environments as expected in theory. Lastly, we investigate environments of the most massive galaxies and extremely massive quasars. By doing so, we find that massive galaxies are a much better signpost for galaxy clusters than massive quasars.

  • PDF

PANORAMIC MID-INFRARED VIEWS OF DISTANT CLUSTERS OF GALAXIES WITH AKARI

  • Koyama, Yusei
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.287-291
    • /
    • 2017
  • We present the results of our mid-infrared (MIR) observations of distant clusters of galaxies with AKARI. The wide-field of view of IRC/AKARI ($10^{\prime}{\times}10^{\prime}$) is ideally suited for studying dust-obscured star-formation (SF) activity of galaxies along the cosmic web in the distant universe. We performed a deep and wide-field $15{\mu}m$ (rest-frame ${\approx}8{\mu}m$) imaging observation of the RXJ1716+6708 cluster (z = 0.81) with IRC. We find that $15{\mu}m$-detected cluster member galaxies (with total infrared luminosities of $L_{IR}{\geq}10^{11}L_{\odot}$) are most preferentially located in the cluster outskirt regions, whilst such IR-luminous galaxies avoid the cluster centre. Our $H{\alpha}$ follow-up study of this field confirmed that a significant fraction of $15{\mu}m$-detected cluster galaxies are heavily obscured by dust (with $AH{\alpha}$>3 mag in extreme cases). The environment of such dusty star-burst galaxies coincides with the place where we see a sharp "break" of the colour-density relation, suggesting an important link between dust-obscured SF activity and environmental quenching. We also report the discovery of a new cluster candidate around a radio galaxy at z = 1.52 (4C 65.22), where we obtained one of the deepest IRC imaging datasets with all the nine filters at $2-24{\mu}m$. This field will provide us with the final, excellent laboratory for studying the dust-enshrouded SF activity in galaxies along the cosmic web at the critical epoch of cluster galaxy evolution with AKARI.

Globular Cluster Systems of Early-type Galaxies in Low-density Environments

  • Cho, Jae-Il;Sharples, Ray
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.34.4-34.4
    • /
    • 2010
  • We present the properties of globular cluster systems for 10 early-type galaxies in low density environments obtained using deep images from the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST). Using the ACS Virgo Cluster Survey as a counterpart in high-density environments, we investigate the role of environment in determining the properties of their globular cluster systems. We detect a strong colour bimodality of globular cluster systems in half of our galaxy sample. It is found that there is a strong correlation between the colour and richness of globular cluster populations and their host galaxy luminosities: the less bright galaxies possess bluer and fewer globular clusters as also seen in rich cluster environments. However, the mean colour of globular clusters in our field sample are slightly bluer than those in cluster environments at a given galaxy luminosity, and the colour of the red population has a steeper slope with absolute luminosity. By employing the YEPS simple stellar population model, the colour offset corresponds to metallicity difference of $\Delta$[F e/H ] ~ 0.15 - 1.20 or an age difference of $\Delta$age ~ 2 Gyr on average, implying that GCs in field galaxies appear to be either less metal-rich or younger than those in cluster galaxies. Although we have found that galaxy environment has a subtle effect on the formation and metal enrichment of GC systems, host galaxy mass is the primary factor that determines the stellar populations of GCs and the galaxy itself.

  • PDF

STATISTICS OF GRAVITATIONAL LENSING BY A GALAXY IN CLUSTER OR IN FIELD

  • YOON SO-YOON;PARK MYEONG-GU
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.119-136
    • /
    • 1996
  • To examine the effect of neighboring galaxies on the gravitational lensing statistics, we performed numerical simulations of lensing by many galaxies. The models consist of a galaxy in the rich cluster like Coma, or a galaxy surrounded by field galaxies in $\Omega_0 = 1$ universe with $\Omega_{gal} = 0.1,\;\Omega_{gal} = 0.3\;or\;\Omega_{gal}=1.0\;,\;where\;\Omega_{gal}$ is the total mass in galaxies. Field galaxies either have the same mass or follow Schechter luminosity function and luminosity-velocity relation. Each lensing galaxy is assumed to be singular isothermal sphere (SIS) with finite cutoff radius. In most simulations, the lensing is mainly due to the single galaxy. But in $\Omega_{gal} = 3$ universe, one out of five simulations have 'collective lensing' event in which more than two galaxies collectively produce multiple images. These cases cannot be incorporated into the simple 'standard' lensing statistics calculations. In cases where 'collective lensing' does not occur, distribution of image separation changes from delta function to bimodal distribution due to shear induced by the surrounding galaxies. The amount of spread in the distribution is from a few $\%\;up\;to\;50\%$ of the mean image separation in case when the galaxy is in the Coma-like cluster or when the galaxy is in the field with $\Omega_{gal} = 0.1\;or\;\Omega_{gal}=0.3.$ The mean of the image separation changes less than $5\%$ compared with a single lens case. Cross section for multiple image lensing turns out to be relatively insensitive to the presence of the neighboring galaxies, changing less than $5\%$ for Coma-like cluster and $\Omega_{gal}=0.1,\;0.3$ universe cases. So we conclude that Coma-like cluster or field galaxies whose total mass density $\Omega_{gal}<0.3$ do not significantly affect the probability of multiple image lensing if we exclude the 'collective lensing' cases. However, the distribution of the image separations can be significantly affected especially if the 'collective lensing' cases are included. Therefore, the effects of surrounding galaxies may not be negligible when statistics of lensing is used to deduce the cosmological informations.

  • PDF

Properties of Brightest Cluster Galaxies as a Function of Cluster Classification Type

  • Eom, Heungjin;Shim, Hyunjin
    • Journal of the Korean earth science society
    • /
    • v.36 no.5
    • /
    • pp.427-436
    • /
    • 2015
  • We classified Abell clusters using the magnitude differences between two or three bright member galaxies and investigated how such classification was correlated with the properties of brightest cluster galaxies (BCGs). S-type BCGs being clearly brighter than the rest of the member galaxies were likely to be red, luminous, and evolved as early type galaxies. On the other hand, T-type BCGs being not dominant at all were less luminous than early type galaxies. A small fraction of BCGs was currently forming stars, and all of the star-forming BCGs were T-type BCGs. Active galactic nuclei were most frequent for S-type BCGs. Through these quantitative analyses of the BCG properties, we discussed the possible scenario of BCG formation and the differences between S-type and T-type of BCGs.

SPATIAL DISTRIBUTION OF THE SPIN VECTORS OF THE DISK GALAXIES IN THE VIRGO CLUSTER

  • YUAN Q. R.;HU F. X.;HE X. T.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.55-56
    • /
    • 1996
  • In order to investigate the spatial orientation of the spin vectors of galaxies in the Virgo cluster, we carried out a detailed identification of all the certain and possible member disk galaxies with four UK Schmidt Telescope (UKST) III a-j direct plates digitized by the Automated Plate Measuring System (APM). As a result, a relatively large and complete database with no selection effect of the member galaxies has been established. We provide the APM measured values of the position angle (P.A.) and diameters at the isophotal level of 24.5 $m_j / arcsec^2$. Based on this newly generated database, an initial study on the spatial orientation of the spin vectors of galaxies in the Virgo cluster is shown.

  • PDF

HI gas kinematics of galaxy pairs in the Hydra cluster from ASKAP pilot observations

  • Kim, Shin-Jeong;Oh, Se-Heon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2020
  • We examine the HI gas kinematics and distribution of galaxy pairs in group or cluster environment from high-resolution Australian Square Kilometre Array Pathfinder (ASKAP) WALLABY pilot observations. We use 22 well-resolved galaxies in the Hydra cluster of which 4 galaxies are visually identified as pairs and others are isolated ones. We perform profile decomposition of HI velocity profiles of the galaxies using a new tool, BAYGAUD which enables us to separate a line-of-sight velocity profile into an optimal number of Gaussian components based on Bayesian MCMC techniques. All the HI velocity profiles of the galaxies are decomposed into kinematically cold or warm gas components with their velocity dispersion, 4~8 km/s or > 8 km/s, respectively. We derive the mass fraction of the kinematically cold gas with respect to the total HI gas mass, f = log10(M_cold / M_HI), of the galaxies and correlate them with their dynamical mass. The cold gas reservoir of the paired galaxies in the Hydra cluster is found to be relatively higher than that of the isolated ones which show a negative correlation with the dynamical mass in general.

  • PDF

The Relationship Between Bright Galaxies and Their Faint Companions in Abell 2744, an Ongoing Cluster-Cluster Merger

  • Lee, Hye-Ran;Lee, Joon Hyeop;Kim, Minjin;Ree, Chang Hee;Jeong, Hyunjin;Kyeong, Jaemann;Kim, Sang Chul;Lee, Jong Chul;Ko, Jongwan;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.52-52
    • /
    • 2014
  • It is widely accepted that the evolution of galaxies is accelerated in dense environments. According to recent studies, however, the evolution by direct interactions between galaxies is known to be most active in a galaxy group rather than in a galaxy cluster. In particular, the central galaxy in a group is closely related to its satellites in the properties such as morphology, color and star formation rate, because those galaxies evolve together in a small-scale environment. Currently, however, it is not yet studied well whether such conformity between bright galaxies and their faint companions remains after a galaxy group falls into a galaxy cluster. Recently, Lee et al. (2014) have found that the colors of bright galaxies show a measurable correlation with the mean colors of faint companions around them in WHL J085910.0+294957, a galaxy cluster at z = 0.3, which may be the vestige of infallen groups in the cluster. As a follow-up study, we study Abell 2744, an ongoing cluster-cluster merger at z = 0.308, using the HST Frontier Fields Survey data. The cluster members are selected based on the distributions of color, size and concentration along magnitude. The correlation in color between bright galaxies and their companions is not found in the full area of Abell 2744. However, when the area is limited to the southeastern part of the Abell 2744 image, the mean color of faint companions shows marginal dependence (> $2{\sigma}$ to Bootstrap uncertainties) on the color of their adjacent bright galaxy. We discuss the implication of these results, focusing on their dependence on local environments.

  • PDF