• Title/Summary/Keyword: cluster synchronization

Search Result 22, Processing Time 0.023 seconds

An EIBS Algorithm for Wireless Sensor Network with Life Time Prolongation (수명 연장 기능의 무선 센서 네트워크용 EIBS 알고리즘)

  • Bae, Shi-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.65-73
    • /
    • 2014
  • Since Time synchronization is also critical in Wireless Sensor Networks (WSN) like other networks, a time synchronization protocol for WSN called IBS(Indirect-Broadcast Synchronization) has been already proposed in 2012. As IBS operates in cluster tree topology, network lifetime may be mainly shortened by cluster head node[s], which usually consumes more power than cluster member (i.e. non-cluster head) nodes. In this paper, I propose enhanced version of IBS (called EIBS) which saves overall energy and prolongs network lifetime by re-constructing partial cluster tree locally. Compared with other tree construction approaches, this tree reconstruction algorithm is not only simpler, but also more efficient in the light of overall power consumption and network lifetime.

An Efficient and Stable Congestion Control Scheme with Neighbor Feedback for Cluster Wireless Sensor Networks

  • Hu, Xi;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4342-4366
    • /
    • 2016
  • Congestion control in Cluster Wireless Sensor Networks (CWSNs) has drawn widespread attention and research interests. The increasing number of nodes and scale of networks cause more complex congestion control and management. Active Queue Management (AQM) is one of the major congestion control approaches in CWSNs, and Random Early Detection (RED) algorithm is commonly used to achieve high utilization in AQM. However, traditional RED algorithm depends exclusively on source-side control, which is insufficient to maintain efficiency and state stability. Specifically, when congestion occurs, deficiency of feedback will hinder the instability of the system. In this paper, we adopt the Additive-Increase Multiplicative-Decrease (AIMD) adjustment scheme and propose an improved RED algorithm by using neighbor feedback and scheduling scheme. The congestion control model is presented, which is a linear system with a non-linear feedback, and modeled by Lur'e type system. In the context of delayed Lur'e dynamical network, we adopt the concept of cluster synchronization and show that the congestion controlled system is able to achieve cluster synchronization. Sufficient conditions are derived by applying Lyapunov-Krasovskii functionals. Numerical examples are investigated to validate the effectiveness of the congestion control algorithm and the stability of the network.

Cluster Based Clock Synchronization for Sensor Network

  • Rashid Mamun-Or;HONG Choong Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.415-417
    • /
    • 2005
  • Core operations (e.9. TDMA scheduler, synchronized sleep period, data aggregation) of many proposed protocols for different layer of sensor network necessitate clock synchronization. Our Paper mingles the scheme of dynamic clustering and diffusion based asynchronous averaging algorithm for clock synchronization in sensor network. Our proposed algorithm takes the advantage of dynamic clustering and then applies asynchronous averaging algorithm for synchronization to reduce number of rounds and operations required for converging time which in turn save energy significantly than energy required in diffusion based asynchronous averaging algorithm.

  • PDF

Synchronization of Network Interfaces in System Area Networks (시스템 에어리어 네트?에서의 동기화 기법)

  • Song, Hyo-Jung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.5
    • /
    • pp.219-231
    • /
    • 2005
  • Many applications in cluster computing require QoS (Quality of Service) services. Since performance predictability is essential to provide QoS service, underlying systems must provide predictable performance guarantees. One way to ensure such guarantees from network subsystems is to generate global schedules from applications'network requests and to execute the local portion of the schedules at each network interface. To ensure accurate execution of the schedules, it is essential that a global time base must be maintained by local clocks at each network interface. The task of providing a single time base is called a synchronization problem and this paper addresses the problem for system area networks. To solve the synchronization problem, FM-QoS (1) proposed a simple synchronization mechanism called FBS(Feedback-Based Synchronization) which uses built-in How control signals. This paper extends the basic notion of FM-QoS to a theoretical framework and generalizes it: 1) to identify a set of built-in network flow control signals for synchrony and to formalize it as a synchronizing schedule, and 2) to analyze the synchronization precision of FBS in terms of flow control parameters. Based on generalization, two application classes are studied for a single switch network and a multiple switch network. For each class, a synchroniring schedule is proposed and its bounded skew is analyzed. Unlike FM-QoS, the synchronizing schedule is proven to minimize the bounded skew value for a single switch network. To understand the analysis results in practical networks, skew values are obtained with flow control parameters of Myrinet-1280/SAN. We observed that the maximum bounded skew of FBS is 9.2 Usec or less over all our experiments. Based on this result, we came to a conclusion that FBS was a feasible synchronization mechanism in system area networks.

A VR-based Tile Display System for the Distributed Visualization (분산 가시화를 위한 가상현실 타일 디스플레이 시스템의 개발)

  • Cha, Moo-Hyun;Lee, Jae-Kyung;Hwang, Jin-Sang;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.167-177
    • /
    • 2010
  • In recent years, the use of high-resolution tiled display system which does not have restrictions on the size of the screen and implements various layout of tile is increasing in order to evaluate the digital mock-up in physical scale or explore large engineering data set in detail. In this study, we developed multi-channel distributed visualization system which provides a virtual reality-based visual contents using 3D open-source graphics engine. Efficient data structures and exchange methods were proposed as a scene synchronization technology in PC cluster environments. DLP-Cube based tiled visualization system which provides $5{\times}2$ layout of display wall was developed and we validated our approach using this system. In addition, we introduced integrated control program that administrates PC cluster environment in remote and controls the layout of display channels.

Initial Rendezvous Protocol using Multicarrier Operation for Cognitive Radio Ad-hoc Networks

  • Choi, Ik-Soo;Yoo, Sang-Jo;Seo, Myunghwan;Han, Chul-Hee;Roh, Bongsoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2513-2533
    • /
    • 2018
  • In cognitive radio technology, the overall efficiency of communications systems can be improved without allocating additional bands by allowing a secondary system to utilize the licensed band when the primary system, which has the right to use the band, does not use it. In this paper, we propose a fast and reliable common channel initialization protocol without any exchange of initialization messages between the cluster head and the member nodes in cognitive ad-hoc networks. In the proposed method, the cluster and member nodes perform channel-based spectrum sensing. After sensing, the cluster head transmits a system activation signal through its available channels with a predetermined angle difference pattern. To detect the cluster head's transmission channels and to join the cluster, each member node implements fast Fourier transform (FFT) and computes autocorrelation for the angle difference sequence of the received signal patterns. This is compared to the predetermined reference angle difference pattern. The join-request and channel-decision procedures are presented in this paper. Performance evaluation of the proposed method is presented in the simulation results.

Energy Efficient Cooperative LEACH Protocol for Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.358-365
    • /
    • 2010
  • We develop a low complexity cooperative diversity protocol for low energy adaptive clustering hierarchy (LEACH) based wireless sensor networks. A cross layer approach is used to obtain spatial diversity in the physical layer. In this paper, a simple modification in clustering algorithm of the LEACH protocol is proposed to exploit virtual multiple-input multiple-output (MIMO) based user cooperation. In lieu of selecting a single cluster-head at network layer, we proposed M cluster-heads in each cluster to obtain a diversity order of M in long distance communication. Due to the broadcast nature of wireless transmission, cluster-heads are able to receive data from sensor nodes at the same time. This fact ensures the synchronization required to implement a virtual MIMO based space time block code (STBC) in cluster-head to sink node transmission. An analytical method to evaluate the energy consumption based on BER curve is presented. Analysis and simulation results show that proposed cooperative LEACH protocol can save a huge amount of energy over LEACH protocol with same data rate, bit error rate, delay and bandwidth requirements. Moreover, this proposal can achieve higher order diversity with improved spectral efficiency compared to other virtual MIMO based protocols.

Application of a Parallel Asynchronous Algorithm to Some Grid Problems on Workstation Clusters

  • Park, Pil-Seong
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.173-179
    • /
    • 2001
  • Parallel supercomputing is now a must for oceanographic numerical modelers. Most of today's parallel numerical schemes use synchronous algorithms, where some processors that have finished their tasks earlier than others must wait at synchronization points for correct computation. Hence, the load balancing is a crucial factor, however, it is, in general, difficult to achieve on heterogeneous workstation clusters. We devise an asynchronous algorithm that reduces the idle times of faster processors, and discuss application of the algorithm to some grid problems and implementation on a workstation cluster using Message Passing Interface (MPI).

  • PDF

Time Synchronization Robust to Topology Change Through Reference Node Re-Election (기준노드의 재선정을 통한 토폴로지 변화에 강인한 시간 동기화)

  • Jeon, Young;Kim, Taehong;Kim, Taejoon;Lee, Jaeseang;Ham, Jae-Hyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.8
    • /
    • pp.191-200
    • /
    • 2019
  • In an Ad-hoc network, a method of time synchronizing all the nodes in a network centering on one reference node can be used. A representative algorithm based on a reference node is Flooding Time Synchronization Protocol (FTSP). In the process of sending and receiving messages, predictable and unpredictable delays occur, which should be removed because it hinders accurate time synchronization. In multi-hop communications, hop delays occur when a packet traverses a number of hops. These hop delays significantly degrade the synchronization performance among nodes. Therefore, we need to find a method to reduce these hop delays and increase synchronization performance. In the FTSP scheme, hop delays can be greatly increased depending on the position of a reference node. In addition, in FTSP, a node with the smallest node ID is elected as a reference node, hence, the position of a reference node is actually arbitrarily determined. In this paper, we propose an optimal reference node election algorithm to reduce hop delays, and compare the performance of the proposed scheme with FTSP using the network simulator OPNET. In addition, we verify that the proposed scheme has an improved synchronization performance, which is robust to topology changes.

Development of On-board Computer Module for Formation Flying and Cluster Operation Nano-satellites (초소형 위성의 편대 및 군집 운용을 위한 모듈형 온보드 컴퓨터 개발)

  • Oh, Hyungjik;Kim, Do-hyun;Park, Ki-Yun;Lee, Ju-in;Jung, Insun;Lee, Seonghwan;Park, Jae-Pil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.728-737
    • /
    • 2019
  • In this study, the minimized on-board computer (OBC) module for integrated navigation is developed, which provides satellites' relative position information in formation flying and cluster operation situations. The scalability is considered to apply the user-selected wireless communication module and Global Positioning System (GPS) receiver for navigation, while considering to meet the structural design standard of nano-satellites. As a result of the product development and production, the processing speed of integrated navigation and real-time data synchronization is satisfied for cluster operation nano-satellites by using micro controller unit (MCU). From a heat/vacuum, vibration and radiation test, the OBC was confirmed to be operated in space environments. From these results, a mass production system of OBC was made which is a key part of development on satellite formation flying and cluster/constellation missions that the community demands are increasing.