• Title/Summary/Keyword: cluster method

Search Result 2,498, Processing Time 0.026 seconds

A Method of Data Hiding in a File System by Modifying Directory Information

  • Cho, Gyu-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.85-93
    • /
    • 2018
  • In this research, it is proposed that a method to hide data by modifying directory index entry information. It consists of two methods: a directory list hiding and a file contents hiding. The directory list hiding method is to avoid the list of files from appearing in the file explorer window or the command prompt window. By modifying the file names of several index entries to make them duplicated, if the duplicated files are deleted, then the only the original file is deleted, but the modified files are retained in the MFT entry intact. So, the fact that these files are hidden is not exposed. The file contents hiding is to allocate data to be hidden on an empty index record page that is not used. If many files are made in the directory, several 4KB index records are allocated. NTFS leaves the empty index records unchanged after deleting the files. By modifying the run-list of the index record with the cluster number of the file-to-hide, the contents of the file-to-hide are hidden in the index record. By applying the proposed method to the case of hiding two files, the file lists are not exposed in the file explorer and the command prompt window, and the contents of the file-to-hide are hidden in the empty index record. It is proved that the proposed method has effectiveness and validity.

Detecting Faces on Still Images using Sub-block Processing (서브블록 프로세싱을 이용한 정지영상에서의 얼굴 검출 기법)

  • Yoo Chae-Gon
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.417-420
    • /
    • 2006
  • Detection of faces on still color images with arbitrary backgrounds is attempted in this paper. The newly proposed method is invariant to arbitrary background, number of faces, scale, orientation, skin color, and illumination through the steps of color clustering, cluster scanning, sub-block processing, face area detection, and face verification. The sub-block method makes the proposed method invariant to the size and the number of faces in the image. The proposed method does not need any pre-training steps or a preliminary face database. The proposed method may be applied to areas such as security control, video and photo indexing, and other automatic computer vision-related fields.

Spatial Clustering Method Via Generalized Lasso (Generalized Lasso를 이용한 공간 군집 기법)

  • Song, Eunjung;Choi, Hosik;Hwang, Seungsik;Lee, Woojoo
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.4
    • /
    • pp.561-575
    • /
    • 2014
  • In this paper, we propose a penalized likelihood method to detect local spatial clusters associated with disease. The key computational algorithm is based on genlasso by Tibshirani and Taylor (2011). The proposed method has two main advantages over Kulldorff's method which is popoular to detect local spatial clusters. First, it is not needed to specify a proper cluster size a priori. Second, any type of covariate can be incorporated and, it is possible to find local spatial clusters adjusted for some demographic variables. We illustrate our proposed method using tuberculosis data from Seoul.

A Study on Expression Method and Characteristic of Transparency of the Surface in Current Commercial Space (현대 상업건축공간에 있어서 표피의 투명성 표현방법과 이미지 특성에 관한 연구)

  • Park Chan-Il;Cho Mi-Na
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.6 s.53
    • /
    • pp.66-74
    • /
    • 2005
  • The purpose of this study analyzes an expression method and a characteristic of transparency of a surface in commercial space, and it is to show an index of a surface design. We did image evaluation by SD method for the commercial space which directed transparency to a surface as the method. We used a factor analysis and cluster analysis to get the image characteristic and type of the expression methods. As a result, we got six following expression methods and design indexes. (1) Transparency expression of a surface by a multiple layer. (2) Transparency expression of a surface by unification with a structure. (3) Transparency expression of a surface by transparency of materials. (4) Transparency expression of a surface by a combination of various materials. (5) Transparency expression of a surface by unification of the image media. (6) Transparency expression of a surface by transparency transformation of materials. We think that it will be able to make use of these results as a design index for the surface design of a commercial space in the future.

A Step-wise Elimination Method Based on Euclidean Distance for Performance Optimization Regarding to Chemical Sensor Array (유클리디언 거리 기반의 단계적 소거 방법을 통한 화학센서 어레이 성능 최적화)

  • Lim, Hea-Jin;Choi, Jang-Sik;Jeon, Jin-Young;Byu, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.258-263
    • /
    • 2015
  • In order to prevent drink-driving by detecting concentration of alcohol from driver's exhale breath, twenty chemical sensors fabricated. The one of purposes for sensor array which consists of those sensors is to discriminate between target gas(alcohol) and interference gases($CH_3CH_2OH$, CO, NOx, Toluene, and Xylene). Wilks's lambda was presented to achieve above purpose and optimal sensors were selected using the method. In this paper, step-wise sensor elimination based on Euclidean distance was investigated for selecting optimal sensors and compared with a result of Wilks's lambda method. The selectivity and sensitivity of sensor array were used for comparing performance of sensor array as a result of two methods. The data acquired from selected sensor were analyzed by pattern analysis methods, principal component analysis and Sammon's mapping to analyze cluster tendency in the low space (2D). The sensor array by stepwise sensor elimination method had a better sensitivity and selectivity compared to a result of Wilks's lambda method.

Magnetoencephalography Interictal Spike Clustering in Relation with Surgical Outcome of Cortical Dysplasia

  • Jeong, Woorim;Chung, Chun Kee;Kim, June Sic
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.5
    • /
    • pp.466-471
    • /
    • 2012
  • Objective : The aim of this study was to devise an objective clustering method for magnetoencephalography (MEG) interictal spike sources, and to identify the prognostic value of the new clustering method in adult epilepsy patients with cortical dysplasia (CD). Methods : We retrospectively analyzed 25 adult patients with histologically proven CD, who underwent MEG examination and surgical resection for intractable epilepsy. The mean postoperative follow-up period was 3.1 years. A hierarchical clustering method was adopted for MEG interictal spike source clustering. Clustered sources were then tested for their prognostic value toward surgical outcome. Results : Postoperative seizure outcome was Engel class I in 6 (24%), class II in 3 (12%), class III in 12 (48%), and class IV in 4 (16%) patients. With respect to MEG spike clustering, 12 of 25 (48%) patients showed 1 cluster, 2 (8%) showed 2 or more clusters within the same lobe, 10 (40%) showed 2 or more clusters in a different lobe, and 1 (4%) patient had only scattered spikes with no clustering. Patients who showed focal clustering achieved better surgical outcome than distributed cases (p=0.017). Conclusion : This is the first study that introduces an objective method to classify the distribution of MEG interictal spike sources. By using a hierarchical clustering method, we found that the presence of focal clustered spikes predicts a better postoperative outcome in epilepsy patients with CD.

Selection Method of Multiple Threshold Based on Probability Distribution function Using Fuzzy Clustering (퍼지 클러스터링을 이용한 확률분포함수 기반의 다중문턱값 선정법)

  • Kim, Gyung-Bum;Chung, Sung-Chong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.48-57
    • /
    • 1999
  • Applications of thresholding technique are based on the assumption that object and background pixels in a digital image can be distinguished by their gray level values. For the segmentation of more complex images, it is necessary to resort to multiple threshold selection techniques. This paper describes a new method for multiple threshold selection of gray level images which are not clearly distinguishable from the background. The proposed method consists of three main stages. In the first stage, a probability distribution function for a gray level histogram of an image is derived. Cluster points are defined according to the probability distribution function. In the second stage, fuzzy partition matrix of the probability distribution function is generated through the fuzzy clustering process. Finally, elements of the fuzzy partition matrix are classified as clusters according to gray level values by using max-membership method. Boundary values of classified clusters are selected as multiple threshold. In order to verify the performance of the developed algorithm, automatic inspection process of ball grid array is presented.

  • PDF

Robust Lane Detection Method Under Severe Environment (악 조건 환경에서의 강건한 차선 인식 방법)

  • Lim, Dong-Hyeog;Tran, Trung-Thien;Cho, Sang-Bock
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.224-230
    • /
    • 2013
  • Lane boundary detection plays a key role in the driver assistance system. This study proposes a robust method for detecting lane boundary in severe environment. First, a horizontal line detects form the original image using improved Vertical Mean Distribution Method (iVMD) and the sub-region image which is under the horizontal line, is determined. Second, we extract the lane marking from the sub-region image using Canny edge detector. Finally, K-means clustering algorithm classifi left and right lane cluster under variant illumination, cracked road, complex lane marking and passing traffic. Experimental results show that the proposed method satisfie the real-time and efficient requirement of the intelligent transportation system.

An Adaptive Reclosing Scheme Based on the Classification of Fault Patterns in Power distribution System (사고 패턴 분류에 기초한 배전계통의 적응 재폐로방식)

  • Oh, Jung-Hwan;Kim, Jae-Chul;Yun, Sang-Yun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.3
    • /
    • pp.112-119
    • /
    • 2001
  • This paper proposes an adaptive reclosing scheme which is based on the classification of fault patterns. In case that the first reclosing is unsuccessful in distribution system employing with two-shot reclosing scheme, the proposed method can determine whether the second reclosing will be attempted of not. If the first reclosing is unsuccessful two fault currents can be measured before the second reclosing is attempted, where these two fault currents are utilized for an adaptive reclosing scheme. Total harmonic distortion and RMS are used for extracting the characteristics of two fault currents. And the pattern of two fault currents is respectively classified using a mountain clustering method a minimum-distance classifier. Mountain clustering method searches the cluster centers using the acquired past data. And minimum-distance classifier is used for classifying the measured two currents into one of the searched centers respectively. If two currents have the different pattern it is interpreted as temporary fault. But in case of the same pattern, the occurred fault is interpreted as permanent. The proposed method was tested for the fault data which had been measured in KEPCO's distribution system, and the test results can demonstrate the effectiveness of the adaptive reclosing scheme.

  • PDF

A Clustering-Based Fault Detection Method for Steam Boiler Tube in Thermal Power Plant

  • Yu, Jungwon;Jang, Jaeyel;Yoo, Jaeyeong;Park, June Ho;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.848-859
    • /
    • 2016
  • System failures in thermal power plants (TPPs) can lead to serious losses because the equipment is operated under very high pressure and temperature. Therefore, it is indispensable for alarm systems to inform field workers in advance of any abnormal operating conditions in the equipment. In this paper, we propose a clustering-based fault detection method for steam boiler tubes in TPPs. For data clustering, k-means algorithm is employed and the number of clusters are systematically determined by slope statistic. In the clustering-based method, it is assumed that normal data samples are close to the centers of clusters and those of abnormal are far from the centers. After partitioning training samples collected from normal target systems, fault scores (FSs) are assigned to unseen samples according to the distances between the samples and their closest cluster centroids. Alarm signals are generated if the FSs exceed predefined threshold values. The validity of exponentially weighted moving average to reduce false alarms is also investigated. To verify the performance, the proposed method is applied to failure cases due to boiler tube leakage. The experiment results show that the proposed method can detect the abnormal conditions of the target system successfully.