• Title/Summary/Keyword: cloud task scheduling

Search Result 45, Processing Time 0.019 seconds

Dynamic Task Scheduling Via Policy Iteration Scheduling Approach for Cloud Computing

  • Hu, Bin;Xie, Ning;Zhao, Tingting;Zhang, Xiaotong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1265-1278
    • /
    • 2017
  • Dynamic task scheduling is one of the most popular research topics in the cloud computing field. The cloud scheduler dynamically provides VM resources to variable cloud tasks with different scheduling strategies in cloud computing. In this study, we utilized a valid model to describe the dynamic changes of both computing facilities (such as hardware updating) and request task queuing. We built a novel approach called Policy Iteration Scheduling (PIS) to globally optimize the independent task scheduling scheme and minimize the total execution time of priority tasks. We performed experiments with randomly generated cloud task sets and varied the performance of VM resources using Poisson distributions. The results show that PIS outperforms other popular schedulers in a typical cloud computing environment.

Deep Learning Based Security Model for Cloud based Task Scheduling

  • Devi, Karuppiah;Paulraj, D.;Muthusenthil, Balasubramanian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3663-3679
    • /
    • 2020
  • Scheduling plays a dynamic role in cloud computing in generating as well as in efficient distribution of the resources of each task. The principle goal of scheduling is to limit resource starvation and to guarantee fairness among the parties using the resources. The demand for resources fluctuates dynamically hence the prearranging of resources is a challenging task. Many task-scheduling approaches have been used in the cloud-computing environment. Security in cloud computing environment is one of the core issue in distributed computing. We have designed a deep learning-based security model for scheduling tasks in cloud computing and it has been implemented using CloudSim 3.0 simulator written in Java and verification of the results from different perspectives, such as response time with and without security factors, makespan, cost, CPU utilization, I/O utilization, Memory utilization, and execution time is compared with Round Robin (RR) and Waited Round Robin (WRR) algorithms.

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

  • Xiuye Yin;Liyong Chen
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.450-464
    • /
    • 2023
  • To address the problems of large system overhead and low timeliness when dealing with task scheduling in mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and network models. In addition, a multi-objective optimization model, including delay and energy consumption, was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.

Multi-factor Evolution for Large-scale Multi-objective Cloud Task Scheduling

  • Tianhao Zhao;Linjie Wu;Di Wu;Jianwei Li;Zhihua Cui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1100-1122
    • /
    • 2023
  • Scheduling user-submitted cloud tasks to the appropriate virtual machine (VM) in cloud computing is critical for cloud providers. However, as the demand for cloud resources from user tasks continues to grow, current evolutionary algorithms (EAs) cannot satisfy the optimal solution of large-scale cloud task scheduling problems. In this paper, we first construct a large- scale multi-objective cloud task problem considering the time and cost functions. Second, a multi-objective optimization algorithm based on multi-factor optimization (MFO) is proposed to solve the established problem. This algorithm solves by decomposing the large-scale optimization problem into multiple optimization subproblems. This reduces the computational burden of the algorithm. Later, the introduction of the MFO strategy provides the algorithm with a parallel evolutionary paradigm for multiple subpopulations of implicit knowledge transfer. Finally, simulation experiments and comparisons are performed on a large-scale task scheduling test set on the CloudSim platform. Experimental results show that our algorithm can obtain the best scheduling solution while maintaining good results of the objective function compared with other optimization algorithms.

Long-Term Container Allocation via Optimized Task Scheduling Through Deep Learning (OTS-DL) And High-Level Security

  • Muthakshi S;Mahesh K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1258-1275
    • /
    • 2023
  • Cloud computing is a new technology that has adapted to the traditional way of service providing. Service providers are responsible for managing the allocation of resources. Selecting suitable containers and bandwidth for job scheduling has been a challenging task for the service providers. There are several existing systems that have introduced many algorithms for resource allocation. To overcome these challenges, the proposed system introduces an Optimized Task Scheduling Algorithm with Deep Learning (OTS-DL). When a job is assigned to a Cloud Service Provider (CSP), the containers are allocated automatically. The article segregates the containers as' Long-Term Container (LTC)' and 'Short-Term Container (STC)' for resource allocation. The system leverages an 'Optimized Task Scheduling Algorithm' to maximize the resource utilisation that initially inquires for micro-task and macro-task dependencies. The bottleneck task is chosen and acted upon accordingly. Further, the system initializes a 'Deep Learning' (DL) for implementing all the progressive steps of job scheduling in the cloud. Further, to overcome container attacks and errors, the system formulates a Container Convergence (Fault Tolerance) theory with high-level security. The results demonstrate that the used optimization algorithm is more effective for implementing a complete resource allocation and solving the large-scale optimization problem of resource allocation and security issues.

Improved Hybrid Symbiotic Organism Search Task-Scheduling Algorithm for Cloud Computing

  • Choe, SongIl;Li, Bo;Ri, IlNam;Paek, ChangSu;Rim, JuSong;Yun, SuBom
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3516-3541
    • /
    • 2018
  • Task scheduling is one of the most challenging aspects of cloud computing nowadays, and it plays an important role in improving overall performance in, and services from, the cloud, such as response time, cost, makespan, and throughput. A recent cloud task-scheduling algorithm based on the symbiotic organisms search (SOS) algorithm not only has fewer specific parameters, but also incurs time complexity. SOS is a newly developed metaheuristic optimization technique for solving numerical optimization problems. In this paper, the basic SOS algorithm is reduced, and chaotic local search (CLS) is integrated into the reduced SOS to improve the convergence rate. Simulated annealing (SA) is also added to help the SOS algorithm avoid being trapped in a local minimum. The performance of the proposed SA-CLS-SOS algorithm is evaluated by extensive simulation using the Matlab framework, and is compared with SOS, SA-SOS, and CLS-SOS algorithms. Simulation results show that the improved hybrid SOS performs better than SOS, SA-SOS, and CLS-SOS in terms of convergence speed and makespan.

Task Scheduling in Fog Computing - Classification, Review, Challenges and Future Directions

  • Alsadie, Deafallah
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.89-100
    • /
    • 2022
  • With the advancement in the Internet of things Technology (IoT) cloud computing, billions of physical devices have been interconnected for sharing and collecting data in different applications. Despite many advancements, some latency - specific application in the real world is not feasible due to existing constraints of IoT devices and distance between cloud and IoT devices. In order to address issues of latency sensitive applications, fog computing has been developed that involves the availability of computing and storage resources at the edge of the network near the IoT devices. However, fog computing suffers from many limitations such as heterogeneity, storage capabilities, processing capability, memory limitations etc. Therefore, it requires an adequate task scheduling method for utilizing computing resources optimally at the fog layer. This work presents a comprehensive review of different task scheduling methods in fog computing. It analyses different task scheduling methods developed for a fog computing environment in multiple dimensions and compares them to highlight the advantages and disadvantages of methods. Finally, it presents promising research directions for fellow researchers in the fog computing environment.

Effective Task Scheduling and Dynamic Resource Optimization based on Heuristic Algorithms in Cloud Computing Environment

  • NZanywayingoma, Frederic;Yang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5780-5802
    • /
    • 2017
  • Cloud computing system consists of distributed resources in a dynamic and decentralized environment. Therefore, using cloud computing resources efficiently and getting the maximum profits are still challenging problems to the cloud service providers and cloud service users. It is important to provide the efficient scheduling. To schedule cloud resources, numerous heuristic algorithms such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search (CS) algorithms have been adopted. The paper proposes a Modified Particle Swarm Optimization (MPSO) algorithm to solve the above mentioned issues. We first formulate an optimization problem and propose a Modified PSO optimization technique. The performance of MPSO was evaluated against PSO, and GA. Our experimental results show that the proposed MPSO minimizes the task execution time, and maximizes the resource utilization rate.

A Genetic Algorithm Based Task Scheduling for Cloud Computing with Fuzzy logic

  • Singh, Avtar;Dutta, Kamlesh
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.6
    • /
    • pp.367-372
    • /
    • 2013
  • Cloud computing technology has been developing at an increasing expansion rate. Today most of firms are using this technology, making improving the quality of service one of the most important issues. To achieve this, the system must operate efficiently with less idle time and without deteriorating the customer satisfaction. This paper focuses on enhancing the efficiency of a conventional Genetic Algorithm (GA) for task scheduling in cloud computing using Fuzzy Logic (FL). This study collected a group of task schedules and assessed the quality of each task schedule with the user expectation. The work iterates the best scheduling order genetic operations to make the optimal task schedule. General GA takes considerable time to find the correct scheduling order when all the fitness function parameters are the same. GA is an intuitive approach for solving problems because it covers all possible aspects of the problem. When this approach is combined with fuzzy logic (FL), it behaves like a human brain as a problem solver from an existing database (Memory). The present scheme compares GA with and without FL. Using FL, the proposed system at a 100, 400 and 1000 sample size*5 gave 70%, 57% and 47% better improvement in the task time compared to GA.

  • PDF

A Task Scheduling Strategy in Cloud Computing with Service Differentiation

  • Xue, Yuanzheng;Jin, Shunfu;Wang, Xiushuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5269-5286
    • /
    • 2018
  • Task scheduling is one of the key issues in improving system performance and optimizing resource management in cloud computing environment. In order to provide appropriate services for heterogeneous users, we propose a novel task scheduling strategy with service differentiation, in which the delay sensitive tasks are assigned to the rapid cloud with high-speed processing, whereas the fault sensitive tasks are assigned to the reliable cloud with service restoration. Considering that a user can receive service from either local SaaS (Software as a Service) servers or public IaaS (Infrastructure as a Service) cloud, we establish a hybrid queueing network based system model. With the assumption of Poisson arriving process, we analyze the system model in steady state. Moreover, we derive the performance measures in terms of average response time of the delay sensitive tasks and utilization of VMs (Virtual Machines) in reliable cloud. We provide experimental results to validate the proposed strategy and the system model. Furthermore, we investigate the Nash equilibrium behavior and the social optimization behavior of the delay sensitive tasks. Finally, we carry out an improved intelligent searching algorithm to obtain the optimal arrival rate of total tasks and present a pricing policy for the delay sensitive tasks.