Development of cumulus is studied by numerically integrating the equation of motion equations of conservation for water vapor mixing ratio, and the thermodynamic energy equuation. We use the terrain-following coordinate system called z'-coordinate system, in which we can easily treat any calculation domain with terrain configuration such as mountains. The model domain of calculation is restricted vertically to 4.Skin and horizontally to 100 km, has a bell-type mountain in the centeral part. Four cases are considered, one in a neutral environment, second in a slightly stable environment, third in a environment decreasing water content with low value of initial water vapor mixing ratio, the fourth in a case with higher vapor gradient. The more the atmosphere is unstable, the more cumulus develops easily and the more water vapors is abundant, the more cumulus develops easily too. More detailed cloud microphysics parameterizations and wet deposition must be conridered to use in air pollutants prediction model.
4차 산업혁명시대 정부의 꾸준한 법 규제 완화로 클라우드 도입 저해 요소들에 대한 해결 방안이 생기면서 교육환경에도 큰 변화를 가져 오고 있다. 대학에서도 클라우드 컴퓨팅 도입에 대한 관심은 점점 커져가고 있지만 인식 확산 및 분위기 조성 단계에 머무르는 수준이다. 본 연구는 클라우드 컴퓨팅 도입 효과에 영향을 미치는 요인 분석을 통해 확장성, 민첩성, 호환성, 경제성, 보안성, 안정성, 제도적 지원 요인을 "K사이버대학교의 클라우드 기반 원격 교육 시스템 구축" 성공사례의 도입효과에 대한 실증 요인을 분석하였다. 이를 통해 도출된 요인은 성공적인 클라우드 컴퓨팅 도입을 위한 전략 및 방향성 제시의 실증적인 연구의 의의가 있다. 향후 연구에서는 클라우드 컴퓨팅 도입 이전의 다양한 요인 분석에 대한 모델을 구체화 및 확대하여 실증적 요인을 근간으로 하는 연구의 배경으로 활용 될 수 있을 것이다.
The concept of Cloud computing has been introduced in the IT field over 10 years and industry has been expanding constantly. However, compare to the maturity of global market, Korea cloud computing industry is only in the early stage. Even the Korea has advantages in technology infrastructure; the pace of Korea cloud computing market growth is taking a serious downturn. Under these circumstances, it is needed to be discussing that strategy for expanding the cloud computing market size and for sustaining global competitiveness of local companies. Previous studies on plans for Korea cloud computing market has been conducted since 2009 and most of them are tend to examined in demand perspective. Thus, this study aims at identifying the priority of business challenges for making better performance in the market with service provider aspects. To analyze the important factors in the providing cloud computing service, ANP methodology was applied in this study. The network model including five clusters, security, stability, performance, consumer, and institution, was defined through literature review and expert survey was conducted to collect data. As a result of ANP analysis, 'Securing service reliability' was analyzed as the most important factor and followed by 'Preparing the range of legal liability', 'Preventing personal information leakage' and 'Preventing confidential information data leakage.' The priority of result indicates that service provider needs to focus on to make the secured service environment. This study has significance on analyzing the priority of business challenges in the service provider perspective. This study will provide useful guidelines to for establishing strategies in cloud computing market.
Purpose As non-face-to-face work environments become common due to COVID-19, interest in online collaboration tools that can communicate smoothly without time and space limitations is continuously increasing. Most of the prior studies are about the introduction, use intention, and satisfaction of cloud computing-based collaboration tools, and studies on the effects of collaboration tools on work-life balance and quality of life are somewhat lacking. Therefore, in this study, the characteristics of cloud computing-based collaboration tools were derived, and the effect on job satisfaction during work and job stress outside of working hours was confirmed. Design/methodology/approach This study applied the S-O-R framework and conducted an online survey of office workers who used cloud computing-based collaboration tools for more than three months. Hypotheses were tested using structural equations. Findings As a result of the analysis, among the characteristics of collaboration tools, stability, usefulness, and interoperability had higher job satisfaction as more stimuli were applied. In addition, the higher the job satisfaction during work, the higher the job performance, work-life balance, and quality of life.
MODIS/Terra level 3 and NCEP/NCAR Reanalysis data from 2001 to 2008 have been analyzed to understand long-term aerosol and cloud optical properties, and their relationships around Korea. Interestingly, cloud fraction(CF) has the similar annual variation to aerosol optical depth (${\tau}_a$) without any temporal significant trend. Horizontal distributions of ${\tau}_a$ showed the substantial horizontal gradient from China to Korea, especially with the strong difference over the Yellow Sea, which could represent the evidence of the anthropogenic influence from China in the perspective of long-term average. Specifically the negative correlations between ${\tau}_a$ and liquid-phase cloud effective radius ($r_e$) were shown on the monthly-average basis, only in summer with significant associations over the Yellow Sea, but not in the other seasons and/or specific regions. Relationship between ${\tau}_a$ and CF for the low-level liquid-phase clouds exhibited the overall positive correlation, being consistent with cloud lifetime effect. Meanwhile static stability showed no deterministic relationships with ${\tau}_a$ as well as CF. The dependence of aerosol-cloud relationship on the meteorological conditions should be examined more in detail with the satellite remote sensing and reanalysis data.
Multi-temporal optical images have been utilized for time-series monitoring of croplands. However, the presence of clouds imposes limitations on image availability, often requiring a cloud removal procedure. This study assesses the applicability of various machine learning algorithms for effective cloud removal in optical imagery. We conducted comparative experiments by focusing on two key variables that significantly influence the predictive performance of machine learning algorithms: (1) land-cover types of training data and (2) temporal variability of land-cover types. Three machine learning algorithms, including Gaussian process regression (GPR), support vector machine (SVM), and random forest (RF), were employed for the experiments using simulated cloudy images in paddy fields of Gunsan. GPR and SVM exhibited superior prediction accuracy when the training data had the same land-cover types as the cloud region, and GPR showed the best stability with respect to sampling fluctuations. In addition, RF was the least affected by the land-cover types and temporal variations of training data. These results indicate that GPR is recommended when the land-cover type and spectral characteristics of the training data are the same as those of the cloud region. On the other hand, RF should be applied when it is difficult to obtain training data with the same land-cover types as the cloud region. Therefore, the land-cover types in cloud areas should be taken into account for extracting informative training data along with selecting the optimal machine learning algorithm.
Cloud computing is a form which provides IT resources through network and pays the cost as much as you used. And it has advantages that it doesn't need to construct infrastructure and can be offered a variety of environments. The main core of these computing is virtualization technology. Security mechanism about attacks using vulnerabilities of virtualization technology isn't provided right and existing security tools can't be applied as it is. In this paper, we proposed honeyVM structure that can cope actively by collecting the information about attacks using virtualization vulnerability. Mamdani fuzzy inference is used to adjust dynamically the number of formed honeyVM depending on the load of system. Security structure to protect actual virtual machine from attacks and threats is proposed. The performance of the proposed structure in this paper measured occurred attack detection rate and resource utilization rate.
The ant colony optimization (ACO) algorithm is a classical metaheuristic optimization algorithm. However, the conventional ACO was liable to trap in the local minimum and has an inherent slow rate of convergence. In this work, we propose a novel combinatorial ACO algorithm (CG-ACO) to alleviate these limitations. The genetic algorithm and the cloud model were embedded into the ACO to find better initial solutions and the optimal parameters. In the experiment section, we compared CG-ACO with the state-of-the-art methods and discussed the parameter stability of CG-ACO. The experiment results showed that the CG-ACO achieved better performance than ACOR, simple genetic algorithm (SGA), CQPSO and CAFSA and was more likely to reach the global optimal solution.
클라우드의 사용이 보급화 됨에 따라 가상화 기술에 다양한 요구사항이 접목, 적용되고 있다. 클라우드 컴퓨팅의 대표적인 특징은 사용자가 원하는 자원 요구사항에 따라 최적화 된 환경을 구축할 수 있으며, 나아가 확장성에도 유연하게 대처할 수 있다. 이런 장점으로 인해 다양한 분산컴퓨팅 분야에 클라우드 컴퓨팅이 적용, 활용되고 있는 실정이다. 이를 위해 클라우드 환경의 성능 안정성을 보장하는 것이 무엇보다 중요하다. 본 연구에서는 구축된 클라우드 교육 시스템 테스트베드 환경에서 시스템의 성능을 보장하기 위한 다양한 요소성능(metric) 측정을 오픈소스 기반의 툴들을 이용하여 분석하였다. 이를 위해 프로세서, 메모리, 캐시, 네트워크 등 가상화 환경에 영향을 주는 요소 성능을 구분하고, 그 성능을 호스트머신(Host Machine) 및 가상머신(Virtual Machine)에서 각각 측정하였다. 이로서 시스템의 상태를 명확하게 파악할 수 있으며, 문제점을 빠르게 진단하여 가용성을 증대시키고 나아가 클라우드 컴퓨팅의 SLA(Service Level Agreement) 수준을 보장할 수 있다.
클라우드 환경은 빅데이터의 이슈와 데이터 분석을 가능하게 하는 기술로서, 이를 위한 자원 관리 기법이 필요하다. 현재까지의 자원관리 기법은 한정된 계산 방법을 이용하여 자원의 편중의 문제점이 있으며, 이를 해결하기 위해서 자원관리는 자원이력 정보를 활용한 학습기반의 스케줄링이 필요하다. 본 논문에서는 ART(Adaptive Resonance Theory)기반의 적응형 자원관리 기법을 제안한다. 제안하는 기법은 클라우드환경에서 모니터링 및 자원이력을 이용하여 작업의 적합한 할당이 가능하다. 제안하는 방법은 무감독 학습방법을 사용하며, 적응형 자원 관리를 통하여 서비스의 안정성과 데이터 처리성능을 향상시키는 것을 목적으로 한다. 제안하는 방법은 체계적인 자원관리가 가능하고 가용자원을 효율적으로 활용하여 요구 성능을 향상시킬 수 있다는 장점이 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.