• 제목/요약/키워드: cloud point

검색결과 852건 처리시간 0.029초

측정 점데이터로부터 단면 데이터 추출에 관한 연구 (A Study on Cross-sectioning Methods for Measured Point Data)

  • 우혁제;강의철;이관행
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.272-276
    • /
    • 2000
  • Reverse engineering refers to the process that creates a physical part from acquiring the surface data of an existing part using a scanning device. In recent years, as the non-contact type scanning devices become more popular, the huge amount of point data can be obtained with high speed. The point data handling process, therefore, becomes more important since the scan data need to be refined for the efficiency of subsequent tasks such as mesh generation and surface fitting. As one of point handling functions, the cross-sectioning function is still frequently used for extracting the necessary data from the point cloud. The commercial reverse engineering software supports cross-sectioning functions, however, these are only for cross-sectioning the point cloud with the constant spacing and direction. In this paper, adaptive cross-sectioning point cloud which allow the changes of the spacing and directions of cross-sections according to the constant spacing and direction. In this paper, adaptive cross-sectioning algorithms which allow the changes of the spacing and directions of cross-sections according to the curvature difference of the point cloud data are proposed.

  • PDF

LIDAR 포인트 cloud로부터 분리된 포인트 군집간 인접관계 인식과 응용에 관한 연구 (A Study on Detecting Neighboring Relation Among Point Segments of LIDAR Point Cloud and its Application)

  • 한수희;이정호;유기윤;김용일
    • 대한공간정보학회지
    • /
    • 제15권1호통권39호
    • /
    • pp.17-22
    • /
    • 2007
  • 본 연구에서는 선행 연구에서 제시한 스캔라인을 이용한 LIDAR 포인트 cloud의 분리과정 중 분리된 포인트 군집간인접 관계를 인식할 수 있는 기능을 추가하여 분리된 건물요소를 인식하고 재결합하였다. 아울러 군집간 인접 특성을 활용하여 지면 포인트 군집을 인식하기 위한 방법론을 제시하였다. 실험 결과 포인트 cloud 분리 과정에 군집간 인접 관계 인식 기능을 추가하더라도 처리 성능이 저하되지 않았으며 후처리를 통하여 건물 요소를 결합하여 온전한 형태의 건물 포인트 군집을 형성함과 더불어 지면 포인트 군집도 인식할 수 있음을 확인하였다.

  • PDF

2차원 라이다와 상업용 영상-관성 기반 주행 거리 기록계를 이용한 3차원 점 구름 지도 작성 시스템 개발 (Development of 3D Point Cloud Mapping System Using 2D LiDAR and Commercial Visual-inertial Odometry Sensor)

  • 문종식;이병윤
    • 대한임베디드공학회논문지
    • /
    • 제16권3호
    • /
    • pp.107-111
    • /
    • 2021
  • A 3D point cloud map is an essential elements in various fields, including precise autonomous navigation system. However, generating a 3D point cloud map using a single sensor has limitations due to the price of expensive sensor. In order to solve this problem, we propose a precise 3D mapping system using low-cost sensor fusion. Generating a point cloud map requires the process of estimating the current position and attitude, and describing the surrounding environment. In this paper, we utilized a commercial visual-inertial odometry sensor to estimate the current position and attitude states. Based on the state value, the 2D LiDAR measurement values describe the surrounding environment to create a point cloud map. To analyze the performance of the proposed algorithm, we compared the performance of the proposed algorithm and the 3D LiDAR-based SLAM (simultaneous localization and mapping) algorithm. As a result, it was confirmed that a precise 3D point cloud map can be generated with the low-cost sensor fusion system proposed in this paper.

실내 포인트 클라우드 데이터 Downsampling의 Trade-off 분석을 통한 기초 연구 (A Basic Study on Trade-off Analysis of Downsampling for Indoor Point Cloud Data)

  • 강남우;오상민;류민우;정용일;조훈희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.40-41
    • /
    • 2020
  • As the capacity of the 3d scanner developed, the reverse engineering using the 3d scanner is emphasized in the construction industry to obtain the 3d geometric representation of buildings. However, big size of the indoor point cloud data acquired by the 3d scanner restricts the efficient process in the reverse engineering. In order to solve this inefficiency, several pre-processing methods simplifying and denoising the raw point cloud data by the rough standard are developed, but these non-standard methods can cause the inaccurate recognition and removal the key-points. This paper analyzes the correlation between the accuracy of wall recognition and the density of the data, thus proposes the proper method for the raw point cloud data. The result of this study could improve the efficiency of the data processing phase in the reverse engineering for indoor point cloud data.

  • PDF

단일 LiDAR를 활용한 End-to-End 기반 3D 모델 생성 방법 (End-to-End based 3D Model Generation Method using a Single LiDAR)

  • 곽정훈;성연식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.532-533
    • /
    • 2020
  • 원격 및 가상환경에서 사용자의 동작에 따른 3D 모델을 제공하기 위해 light detection and range (LiDAR)로 측정된 3D point cloud로 사용자의 3D 모델이 생성되어 원격 및 가상환경에 사용자의 모습이 제공된다. 하지만 3D 모델을 생성하기 위해서는 사용자의 신체 전부가 측정된 3D point cloud가 필요하다. 사용자의 신체 전체를 측정하기 위해서는 적어도 두 개 이상의 LiDAR가 필요하다. 두 개 이상의 LiDAR을 사용할 경우에는 LiDAR을 사용할 공간과 LiDAR를 구비하기 위한 비용이 발생한다. 단일 LiDAR로 3D 모델을 생성하는 방법이 요구된다. 본 논문에서는 단일 LiDAR에서 측정된 3D point cloud를 이용하여 3D 모델을 생성하는 방법이 제안된다. End-to-End 기반 Convolutional Neural Network (CNN) 모델로 측정된 3D point cloud를 분석하여 사용자의 체형과 자세를 예측하도록 학습한다. 기본자세를 취하는 동안 수집된 3D point cloud로 기본이 되는 사용자의 3D 모델을 생성한다. 학습된 CNN 모델을 통하여 측정된 3D point cloud로 사용자의 자세를 예측하여 기본이 되는 3D 모델을 수정하여 3D 모델을 제공한다.

MMT를 이용한 PCC 데이터 송수신 기술 개발 (Development of PCC data transmission and reception using MMT)

  • 박성환;김규헌
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.576-578
    • /
    • 2020
  • 최근 사용자에게 더욱 몰입감 있는 콘텐츠를 제공하기 위한 기술에 대한 관심이 증가하고 있으며 기존의 2D 콘텐츠와는 다른 새로운 방식인 3D 콘텐츠에 대한 연구가 활발히 진행되고 있으며 그 중 가장 대표적인 것이 Point Cloud 영상이라고 할 수 있다. Point Cloud의 경우 수많은 3차원 좌표를 가진 점들로 구성되어 있으며 각 점들마다 Attribute 값을 이용하여 색상 등의 표현이 가능한 구조로 이루어져 있다. 이러한 특성 때문에 Point Cloud 데이터는 방대한 용량을 가지고 있으며 기존의 2D 방식과 데이터 구조가 상이하기 때문에 새로운 압축 표준이 요구되었다. 이에 미디어 표준화 단체인 MPEG(Moving Picture Experts Group)에서는 MPEG-I(Immersive) 차세대 프로젝트 그룹을 이용하여 이러한 움직임에 대응하고 있다. MPEG-I의 part 5(Video-based Point Cloud Compression, V-PCC)에서는 객체를 대상으로 하여 기존의 비디오 코덱을 활용한 Point Cloud 압축 표준화를 진행중이다. V-PCC 데이터의 경우 기존의 2D 영상 데이터와 같이 전송을 통해 소비될 가능성이 아주 높기 때문에 이에 대한 고려가 필요하다. 현재 MPEG에서 표준화를 완료한 MMT(MPEG Media Transport)라는 전송 표준이 존재하기 때문에 이 기술을 활용 가능할 것으로 보인다. 따라서 본 논문에서는 Point Cloud 데이터를 압축한 V-PCC 데이터를 전송 표준 방식인 MMT를 이용하여 전송하는 방안에 대하여 제안한다.

  • PDF

드론 LiDAR에 기반한 매핑 시스템의 고속도로 건설 현장 적용 사례 (Example of Application of Drone Mapping System based on LiDAR to Highway Construction Site)

  • 신승민;권오성;반창우
    • 한국산업융합학회 논문집
    • /
    • 제26권6_3호
    • /
    • pp.1325-1332
    • /
    • 2023
  • Recently, much research is being conducted based on point cloud data for the growth of innovations such as construction automation in the transportation field and virtual national space. This data is often measured through remote control in terrain that is difficult for humans to access using devices such as UAVs and UGVs. Drones, one of the UAVs, are mainly used to acquire point cloud data, but photogrammetry using a vision camera, which takes a lot of time to create a point cloud map, is difficult to apply in construction sites where the terrain changes periodically and surveying is difficult. In this paper, we developed a point cloud mapping system by adopting non-repetitive scanning LiDAR and attempted to confirm improvements through field application. For accuracy analysis, a point cloud map was created through a 2 minute 40 second flight and about 30 seconds of software post-processing on a terrain measuring 144.5 × 138.8 m. As a result of comparing the actual measured distance for structures with an average of 4 m, an average error of 4.3 cm was recorded, confirming that the performance was within the error range applicable to the field.

자율무기체계 시험평가를 위한 실제-가상 연계 포인트 클라우드 증강 기법 (Real-virtual Point Cloud Augmentation Method for Test and Evaluation of Autonomous Weapon Systems)

  • 여세동;황규환;태현성
    • 한국군사과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.375-386
    • /
    • 2024
  • Autonomous weapon systems act according to artificial intelligence-based judgement based on recognition through various sensors. Test and evaluation for various scenarios is required depending on the characteristics that artificial intelligence-based judgement is made. As a part of this approach, this paper proposed a LiDAR point cloud augmentation method for mixed-reality based test and evaluation. The augmentation process is achieved by mixing real and virtual LiDAR signals based on the virtual LiDAR synchronized with the pose of the autonomous weapon system. For realistic augmentation of test and evaluation purposes, appropriate intensity values were inserted when generating a point cloud of a virtual object and its validity was verified. In addition, when mixing the generated point cloud of the virtual object with the real point cloud, the proposed method enhances realism by considering the occlusion phenomenon caused by the insertion of the virtual object.

생성적 적대 신경망 기반 3차원 포인트 클라우드 향상 기법 (3D Point Cloud Enhancement based on Generative Adversarial Network)

  • Moon, HyungDo;Kang, Hoonjong;Jo, Dongsik
    • 한국정보통신학회논문지
    • /
    • 제25권10호
    • /
    • pp.1452-1455
    • /
    • 2021
  • Recently, point clouds are generated by capturing real space in 3D, and it is actively applied and serviced for performances, exhibitions, education, and training. These point cloud data require post-correction work to be used in virtual environments due to errors caused by the capture environment with sensors and cameras. In this paper, we propose an enhancement technique for 3D point cloud data by applying generative adversarial network(GAN). Thus, we performed an approach to regenerate point clouds as an input of GAN. Through our method presented in this paper, point clouds with a lot of noise is configured in the same shape as the real object and environment, enabling precise interaction with the reconstructed content.

Dense Thermal 3D Point Cloud Generation of Building Envelope by Drone-based Photogrammetry

  • Jo, Hyeon Jeong;Jang, Yeong Jae;Lee, Jae Wang;Oh, Jae Hong
    • 한국측량학회지
    • /
    • 제39권2호
    • /
    • pp.73-79
    • /
    • 2021
  • Recently there are growing interests on the energy conservation and emission reduction. In the fields of architecture and civil engineering, the energy monitoring of structures is required to response the energy issues. In perspective of thermal monitoring, thermal images gains popularity for their rich visual information. With the rapid development of the drone platform, aerial thermal images acquired using drone can be used to monitor not only a part of structure, but wider coverage. In addition, the stereo photogrammetric process is expected to generate 3D point cloud with thermal information. However thermal images show very poor in resolution with narrow field of view that limit the use of drone-based thermal photogrammety. In the study, we aimed to generate 3D thermal point cloud using visible and thermal images. The visible images show high spatial resolution being able to generate precise and dense point clouds. Then we extract thermal information from thermal images to assign them onto the point clouds by precisely establishing photogrammetric collinearity between the point clouds and thermal images. From the experiment, we successfully generate dense 3D thermal point cloud showing 3D thermal distribution over the building structure.