• Title/Summary/Keyword: cloud computing systems

Search Result 602, Processing Time 0.026 seconds

Agricultural Irrigation Control using Sensor-enabled Architecture

  • Abdalgader, Khaled;Yousif, Jabar H.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3275-3298
    • /
    • 2022
  • Cloud-based architectures for precision agriculture are domain-specific controlled and require remote access to process and analyze the collected data over third-party cloud computing platforms. Due to the dynamic changes in agricultural parameters and restrictions in terms of accessing cloud platforms, developing a locally controlled and real-time configured architecture is crucial for efficient water irrigation and farmers management in agricultural fields. Thus, we present a new implementation of an independent sensor-enabled architecture using variety of wireless-based sensors to capture soil moisture level, amount of supplied water, and compute the reference evapotranspiration (ETo). Both parameters of soil moisture content and ETo values was then used to manage the amount of irrigated water in a small-scale agriculture field for 356 days. We collected around 34,200 experimental data samples to evaluate the performance of the architecture under different agriculture parameters and conditions, which have significant influence on realizing real-time monitoring of agricultural fields. In a proof of concept, we provide empirical results that show that our architecture performs favorably against the cloud-based architecture, as evaluated on collected experimental data through different statistical performance models. Experimental results demonstrate that the architecture has potential practical application in a many of farming activities, including water irrigation management and agricultural condition control.

Emerging Trends in Cloud-Based E-Learning: A Systematic Review of Predictors, Security and Themes

  • Noorah Abdullah Al manyi;Ahmad Fadhil Yusof;Ali Safaa Sadiq
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.89-104
    • /
    • 2024
  • Cloud-based e-learning (CBEL) represents a promising technological frontier. Existing literature has presented a diverse array of findings regarding the determinants that influence the adoption of CBEL. The primary objective of this study is to conduct an exhaustive examination of the available literature, aiming to determine the key predictors of CBEL utilization by employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. A comprehensive review of 35 articles was undertaken, shedding light on the status of CBEL as an evolving field. Notably, there has been a discernible downturn in related research output during the COVID-19 pandemic, underscoring the temporal dynamics of this subject. It is noteworthy that a significant portion of this research has emanated from the Asian continent. Furthermore, the dominance of the technology acceptance model (TAM) in research frameworks is affirmed by our findings. Through a rigorous thematic analysis, our study identified five overarching themes, each encompassing a diverse range of sub-themes. These themes encompass 1) technological factors, 2) individual factors, 3) organizational factors, 4) environmental factors, and 5) security factors. This categorization provides a structured framework for understanding the multifaceted nature of CBEL adoption determinants. Our study serves as a compass, guiding future research endeavours in this domain. It underscores the imperative for further investigations utilizing diverse theoretical frameworks, contextual settings, research methodologies, and variables. This call for diversity and expansion in research efforts reflects the dynamic nature of CBEL and the evolving landscape of e-learning technologies.

Design and Prototyping of Scientific Collaboration Platform over KREONET (KREONET 기반의 과학기술협업연구 플랫폼(RealLab) 설계 및 프로토타입 구축)

  • Kwon, Yoonjoo;Hong, Wontaek
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.9
    • /
    • pp.297-306
    • /
    • 2015
  • Cloud computing has been increasingly used in various fields due to its flexibility, scalability, cost effectiveness, etc. Recently, many scientific communities have been attempting to use cloud computing as a way to deal with difficulties in constructing and operating a research infrastructure. Especially, since they need various collaborations based on networking, such as sharing experimental data, redistributing experimental results, and so forth, cloud computing environment that supports high performance networking is required for scientific communities. To address these issues, we propose RealLab, a high performance cloud platform for collaborative research that provides virtual experimental research environment and data sharing infrastructure over KREONET/GLORIAD. Additionally, we describe some RealLab use cases for showing the swift creation of experimental environment and explain how massive experimental data can be transferred and shared among the community members.

A Study of the Systems Quality Effect on the Intention to Use of Cloud Computing Services in Information Center (정보센터 시스템 품질이 클라우드 서비스 이용의도에 미치는 영향 연구)

  • Yoon, Jung-Hyeon
    • Journal of the Korean Society for information Management
    • /
    • v.28 no.4
    • /
    • pp.49-63
    • /
    • 2011
  • The purpose of this study is to identify the new roles and services of information center that is affected by changing information technology so called cloud computing service. Using Information Technology acceptance model, hypotheses were developed to find relationships among intention to use of a cloud service, perceived usefulness, perceived easy of use and three system quality evaluation factors such as data safety, network response time, and system accessibility. The hypotheses have been tested with 114 user surveys. This study presents the relationship between certain attitude and intention to use variables and system accessibility applying clouding service. The result of this research gives an insight of the evaluation and a guideline for the implementation of cloud computing services in information centers.

Performance and Energy Oriented Resource Provisioning in Cloud Systems Based on Dynamic Thresholds and Host Reputation (클라우드 시스템에서 동적 임계치와 호스트 평판도를 기반으로 한 성능 및 에너지 중심 자원 프로비저닝)

  • Elijorde, Frank I.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.39-48
    • /
    • 2013
  • A cloud system has to deal with highly variable workloads resulting from dynamic usage patterns in order to keep the QoS within the predefined SLA. Aside from the aspects regarding services, another emerging concern is to keep the energy consumption at a minimum. This requires the cloud providers to consider energy and performance trade-off when allocating virtualized resources in cloud data centers. In this paper, we propose a resource provisioning approach based on dynamic thresholds to detect the workload level of the host machines. The VM selection policy uses utilization data to choose a VM for migration, while the VM allocation policy designates VMs to a host based on its service reputation. We evaluated our work through simulations and results show that our work outperforms non-power aware methods that don't support migration as well as those based on static thresholds and random selection policy.

Comparative Analysis on Cloud and On-Premises Environments for High-Resolution Agricultural Climate Data Processing (고해상도 농업 기후 자료 처리를 위한 클라우드와 온프레미스 비교 분석)

  • Park, Joo Hyeon;Ahn, Mun Il;Kang, Wee Soo;Shim, Kyo-Moon;Park, Eun Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.347-357
    • /
    • 2019
  • The usefulness of processing and analysis systems of GIS-based agricultural climate data is affected by the reliability and availability of computing infrastructures such as cloud, on-premises, and hybrid. Cloud technology has grown in popularity. However, various reference cases accumulated over the years of operational experiences point out important features that make on-premises technology compatible with cloud technology. Both cloud and on-premises technologies have their advantages and disadvantages in terms of operational time and cost, reliability, and security depending on cases of applications. In this study, we have described characteristics of four general computing platforms including cloud, on-premises with hardware-level virtualization, on-premises with operating system-level virtualization and hybrid environments, and compared them in terms of advantages and disadvantages when a huge amount of GIS-based agricultural climate data were stored and processed to provide public services of agro-meteorological and climate information at high spatial and temporal resolutions. It was found that migrating high-resolution agricultural climate data to public cloud would not be reasonable due to high cost for storing a large amount data that may be of no use in the future. Therefore, we recommended hybrid systems that the on-premises and the cloud environments are combined for data storage and backup systems that incur a major cost, and data analysis, processing and presentation that need operational flexibility, respectively.

Dynamic Cloud Resource Reservation Model Based on Trust

  • Qiang, Jiao-Hong;Ning, Ding-Wan;Feng, Tian-Jun;Ping, Li-Wei
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.377-395
    • /
    • 2018
  • Aiming at the problem of service reliability in resource reservation in cloud computing environments, a model of dynamic cloud resource reservation based on trust is proposed. A domain-specific cloud management architecture is designed in which resources are divided into different management domains according to the types of service for easier management. A dynamic resource reservation mechanism (DRRM) is used to test users' reservation requests and reserve resources for users. According to user preference, several resources are chosen to be candidate resources by fuzzy cluster analysis. The fuzzy evaluation method and a two-way trust evaluation mechanism are adopted to improve the availability and credibility of the model. An analysis and simulation experiments show that this model can increase the flexibility of resource reservation and improve user satisfaction.

An Efficient Two-Phase Heuristic Policy for Acceptance Control in IaaS Cloud Service (IaaS 클라우드 서비스 수락제어를 위한 효율적인 2단계 휴리스틱 정책)

  • Kim, Moon Kyung;Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.2
    • /
    • pp.91-100
    • /
    • 2015
  • In this study, we propose an efficient two-phase heuristic policy, called an acceptance tolerance control policy, for Infrastructure as a Service (IaaS) cloud services that considers both the service provider and customer in terms of profit and satisfaction, respectively. Each time an IaaS cloud service is requested, this policy determines whether the service is accepted or rejected by calculating the potential for realizing the two performance objectives. Moreover, it uses acceptance tolerance to identify the possibility for error with the chosen decision while compensating for both future fluctuations in customer demand and error possibilities based on past decisions. We conducted a numerical experiment to verify the performance of the proposed policy using several actual IaaS cloud service specifications and comparing it with other heuristics.

The Method of Data Synchronization Among Devices for Personal Cloud Services (퍼스널 클라우드 서비스를 위한 임의의 단말간 컨텐츠 동기화 방법)

  • Choi, Eunjeong;Lee, Jeunwoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.6
    • /
    • pp.377-382
    • /
    • 2011
  • This paper describes the method of data synchronization among devices for personal cloud services. Existing data synchronization for mobile devices is based on a central server to mobile devices or a PC to a mobile device. However, the purpose of this paper is to share user data in heterogeneous environments, without depending on central server. This technology can be applied to synchronize personal data between a device and a personal cloud storage for personal cloud services. The ad hoc synchronization needs a sync agent service discovery module, a user authentication module, a network adapter, and an application data synchronization module. The method described in this paper is better than existing synchronization technology based on client-server in availability, performance, scalability quality attributes.

A Scheme on High-Performance Caching and High-Capacity File Transmission for Cloud Storage Optimization (클라우드 스토리지 최적화를 위한 고속 캐싱 및 대용량 파일 전송 기법)

  • Kim, Tae-Hun;Kim, Jung-Han;Eom, Young-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.670-679
    • /
    • 2012
  • The recent dissemination of cloud computing makes the amount of data storage to be increased and the cost of storing the data grow rapidly. Accordingly, data and service requests from users also increases the load on the cloud storage. There have been many works that tries to provide low-cost and high-performance schemes on distributed file systems. However, most of them have some weaknesses on performing parallel and random data accesses as well as data accesses of frequent small workloads. Recently, improving the performance of distributed file system based on caching technology is getting much attention. In this paper, we propose a CHPC(Cloud storage High-Performance Caching) framework, providing parallel caching, distributed caching, and proxy caching in distributed file systems. This study compares the proposed framework with existing cloud systems in regard to the reduction of the server's disk I/O, prevention of the server-side bottleneck, deduplication of the page caches in each client, and improvement of overall IOPS. As a results, we show some optimization possibilities on the cloud storage systems based on some evaluations and comparisons with other conventional methods.