
J. Soc. Korea Ind. Syst. Eng Vol. 38, No. 2 : 91-100, June 2015 ISSN : 2005-0461(print)
http://dx.doi.org/10.11627/jkise.2015.38.2.91 ISSN : 2287-7975(online)

An Efficient Two-Phase Heuristic Policy for
Acceptance Control in IaaS Cloud Service

Moon Kyung Kim*․Jin Young Choi**†

*Hyundai AutoEver․Department of Industrial Engineering
**Ajou University

IaaS 클라우드 서비스 수락제어를 위한
효율적인 2단계 휴리스틱 정책

김문경*․최진영**†

*현대 오토에버
**아주대학교 산업공학과

In this study, we propose an efficient two-phase heuristic policy, called an acceptance tolerance control policy, for Infrastructure
as a Service (IaaS) cloud services that considers both the service provider and customer in terms of profit and satisfaction,
respectively. Each time an IaaS cloud service is requested, this policy determines whether the service is accepted or rejected
by calculating the potential for realizing the two performance objectives. Moreover, it uses acceptance tolerance to identify the
possibility for error with the chosen decision while compensating for both future fluctuations in customer demand and error
possibilities based on past decisions. We conducted a numerical experiment to verify the performance of the proposed policy
using several actual IaaS cloud service specifications and comparing it with other heuristics.

Keywords：Acceptance Tolerance, Service Provider Profit, Customer Satisfaction, Inter-arrival time, Cloud Computing, IaaS

1. Introduction1)

Cloud computing, which expands the concept of utility
computing, has recently attracted considerable attention in
the IT industry. In the Cloud, users are not required to own
IT resources such as a CPU, memory, storage, and band-
width. Instead, the Cloud is an on-demand online computing
system that is available at all times [1], [2]. Because large
investments or upgrades on IT equipment and facilities are
unnecessary, Cloud can reduce costs and increase business

Received 14 April 2015; Finally Revised 8 May 2015;
Accepted 8 May 2015
†Corresponding Author : choijy@ajou.ac.kr

productivity. Examples of effective cloud services are the
Amazon Web Service [3], IBM SmartCloud [4], and Micro-
soft Azure [5].

Cloud services can be categorized into three types [6] :
Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). Among these, IaaS
offers virtualized computing resources such as a CPU, memory,
storage, and servers. Amazon Web Services [3] and the on-
line backup solution Mozy [7] are examples of IaaS. Re-
source management procedures for an IaaS cloud service are
as follows. When a cloud service is requested from a custo-
mer, a service level agreement (SLA) resource allocator de-
termines whether to accept it, and then a service manager

Moon Kyung Kim․Jin Young Choi92

<Figure 1> Example of IaaS

controls the selection, allocation, and schedule of resources
necessary to provide the service accepted. The price of the
requested service is managed by the pricing and accounting
divisions of the cloud service, and the usability of the re-
source is verified by the virtual machine monitor. The cloud
service is then offered to the user, and the virtual machine
allocated to the accepted service begins to operate [8]. How-
ever, because the cloud service is based on an SLA between
the service provider and customer, the service provider is
responsible to provide a service that is efficient and satisfies
the SLA. This is accomplished through the use of available
dynamic virtual resources to construct a virtual content deli-
very network [9, 10]. An extensive literature review on the
construction and components/dimensions of cloud computing
service can be found in [11].

Most studies on the admission control in a cloud service
have focused on means of maximizing profit by the service provi-
der’s efforts and operations in managing revenue. Anandasivam
[12] calculated the bid price through a simulation in which
a genetic algorithm is employed before a service request is
accepted. The bid price represents the potential value of a
service and depends on the amount of remaining resources.
By comparing the bid price with the service price, the system
determines whether the service requested is acceptable. Puschel
et al. [13] evaluated an acceptance control algorithm that
manages revenue by examining a real-world gaming system.
Moaker et al. [14] considered an auction-based mechanism
that determines service acceptance in continuous queries, and
introduced a decision policy and pricing mechanism to max-
imize profits. Toosi et al. [15] used cloud federation to propose
a service acceptance control algorithm that produces IaaS-level
cloud services. However, most of these studies designed poli-
cies that only consider the profit of the service provider, and
not customer satisfaction. This could lead to admission control
systems accepting only expensive service requests. Therefore,
a customer’s satisfaction would diminish as the number of
rejected service requests increase, thus necessitating an arbi-
tration method to balance them efficiently.

Based on these deficiencies in research and potential pit-
falls, we propose an efficient two-phase acceptance tolerance
control policy (ATCP) for IaaS cloud services that considers
both service provider profit, and customer satisfaction. Each
time the cloud service is requested, the service provider de-
termines whether that service is to be accepted or declined
by calculating the potential of the aforementioned perfor-
mance objectives. Furthermore, compensating for future fluc-

tuations in customer demand and error possibility based on
past decisions is possible. This is accomplished by using allow-
able tolerance error to determine the possibility for error in
choosing whether to accept or reject the cloud service. To
assess the performance of ACTP, we conduct a numerical
experiment by using several real IaaS cloud service specifi-
cations. Our results reveal its outstanding performance com-
pared to other heuristics.

The remainder of this paper is organized as follows.
Section 2 defines the research problem and assumptions re-
garding the decision-making processes of a cloud service.
Section 3 develops the criteria for the acceptance of the re-
quested service and proposes the two-phase ATCP. Section
4 describes a numerical experiment conducted to verify the
performance of the proposed policy. Finally, Section 5 dis-
cusses the significance of this study and possible directions
for future research.

2. Problem Definition and Assumptions

2.1 Problem Definition

This study examines IaaS-level basic cloud services pro-
vided in service environments, as shown in <Figure 1> [1].
IaaS can be formally described as follows. A service provider
offers a cloud service ∈ ⋯  by using certain re-
sources such as CPU, memory, storage, and bandwidth, as
well as specified quantities of each. Each resource ∈
⋯ is a quantifiable and separate unit. For example, one
unit of CPU refers to a 1.25 GHz virtual CPU and one unit of
memory or storage means 1 GB. Service  uses an  amount
of resource  and consists of (  ⋯ ) amounts of
each resource. For instance, the message queuing service
shown in <Figure 1> uses two units of CPU and includes

An Efficient Two-Phase Heuristic Policy for Acceptance Control in IaaS Cloud Service 93

two units of memory, eight units of storage, and three units
of bandwidth. In addition, service  has a fixed price  ,
representing the amount of profit for a single unit of service
 being accepted and sold. Each resource  initially has a
capacity of  and is consumed by  whenever the re-
quested service  is accepted. Then, whenever the request
for service  occurs at time , the service provider must de-
termine whether the service requested is accepted by consid-
ering the remaining quantity of each resource . This is rep-
resented as  , where  is the amount of resource
 consumed from the beginning of the service to the time .

<Table 1> Example Specification of IaaS

Resource
Services Capacity

(Units)1 2 3 4 5

CPU(units) 2 4 3 8 10 1,500
Memory(units) 2 8 3 4 10 1,500
Storage(units) 8 2 4 4 8 1,500

Bandwidth(units) 4 2 8 4 8 1,500
Price($) 18 19.5 22.5 27 46

<Table 1> shows example specifications for IaaS provided
in a cloud service environment [17]. In the second row of
the table, Services 1 to 5    are applicable to IaaS ser-
vices shown in <Figure 1> such as the message queuing ser-
vice, storage service, and virtual instance. In the first column,
there are four resources    that can be used to construct
these five kinds of cloud services. As shown in the last column,
each resource has the same limited capacity of   ,
∀. The last row shows the price that the service provider
can charge for each accepted service. Finally, each middle
cell represents the amount of each resource consumed by
a specific service. For example, Service 1 uses two units
of CPU    , two units of memory    , eight units
of storage    , and four units of bandwidth    .
If Service 1 is accepted at a time , all the relevant resources
are reduced by those amounts. Thus, during the service sales
period in which services are sold, the service provider faces
the problem of whether or not to accept a requested service
in order to maximize total profit. In addition, the service pro-
vider must consider the customer’s satisfaction.

Based on the operational behavior of IaaS previously de-
scribed, in this study, we aim to develop an efficient service
policy for decision-making regarding the acceptance of IaaS-
level services requested in a cloud service environment. We

emphasize two performance objectives : service provider pro-
fit, and customer satisfaction.

2.2 Assumptions

In providing an IaaS cloud service, we assume the following.
- The service provider provides an IaaS by using the limited

capacity of cloud resources.
- At a time , the maximum number of service requests

is one.
- Cancelation of accepted service orders is not allowed.
- If even one type of resource is completely consumed,

the IaaS service is no longer provided.
- All accepted services are provided for a given period

of time such that the price for service  is constant,
which reflects its usage time.

- The service sales period  is sufficiently long for selling
all types of services.

- The inter-arrival time of service requests is constant or
exponentially distributed.

3. Two-phase Acceptance Tolerance
Control Policy

3.1 Rules for Accepting a Service Request

We develop an acceptance criterion (i.e., one that supports
the service provider’s decision) for a service request in a
cloud computing environment. The proposed criterion is
based on an estimation of the potential value of resources
required to provide service  that has been requested at time
. The potential value of resources for service  is evaluated
by considering both the potential profit of the service pro-
vider, and the potential satisfaction of the customer by using
relevant resources. This is further described as follows.

First, for service  requested at time , we define the po-
tential profit of the service provider using relevant resources
as the potential maximum profit (PMP), which can be for-
mulated as a linear programming model in LP1.

   
≠

 (1)

 s.t. 
≠

 ≤     ⋯  (2)

  ≥     ⋯  (3)

Moon Kyung Kim․Jin Young Choi94

where     ⋯  is the number of acceptable cus-
tomers for service , that will be used in the following linear
programming models. This formulation computes the max-
imum profit obtainable by using   ⋯  when pro-
viding services other than service .

It is clear that if the optimal objective value of LP1, or
, is greater than the price of service , then declining
the corresponding request for service  is recommended.
However, because of the dynamic behavior of service re-
quests received, no guarantee exists that we will obtain the
profit of  after rejecting service . Therefore, accepting
service  may be reasonable if the difference of  
is not greater than a threshold value. We set the threshold
to ×% of  so that  can then represent the error
tolerance of the service provider’s decision regarding its po-
tential profit. This implies that the service provider does not
reject service  if  is not greater than × . From
the viewpoint of the service provider, this criterion can pro-
duce a possible error of ×% with respect to  by ac-
cepting service  in the event that   ≤ ⋅ . The
value of  can be any non-negative value depending on the
tendency of the service provider to taking a risk. For exam-
ple, if the service provider has a conservative tendency, then
the value of  can be set as ≤  . Otherwise, ≥ .

Based on this analysis, the first criterion for considering
the potential profit of the service provider when accepting
the requested service  at time  is defined as follows.

D ecision rule 1 : Service  requested at time  is accepted
only if it satisfies  ≤  , where ≥  repre-
sents the error tolerance of the service provider’s decision
regarding its potential profit.

Second, regarding customer satisfaction, we can consider
the maximum number of accepted customer requests by us-
ing available resources. When an IaaS service is initially
launched at initial time   , the maximum number of ac-
ceptable customers can be calculated by solving the follow-
ing linear programming problem.

    




 (4)

 s.t. 
 



 ≤     ⋯  (5)

  ≥     ⋯  (6)

where Equation 4 is the number of all acceptable customer
requests, and Equation 5 describes the limited conditions of
each resource. The optimal solution 

  
 

 ⋯ 
 

of LP2 indicates that a maximum of  requests can be ac-
cepted by using all available resources, with maximum 
customer requests for each service ∈  ⋯ .

However, in order to achieve 
  

 
 ⋯ 

  in a

real situation, the service provider may purposely have to
accept or decline many customer service requests, because
of the dynamic behavior of service requests received. In terms
of customer satisfaction, this may not be acceptable because
many customer requests may then be rejected, resulting in
many customer complaints. Moreover, although it may be
favorable to the service provider if its decisions result in
a value equal or nearly equal to 

 , regarding the accepted

number of customers, no guarantee exists that 
  



 ⋯ 

  can maximize the service provider’s profit.
Based on these observations, for service  requested at

time , we evaluate the potential customer satisfaction using
relevant resources and by determining whether rejecting ser-
vice  can help to provide an even greater number of customer
services while also reducing the possibility of customer re-
quests being denied. We incorporate these considerations into
our decision criterion to pursue the following : (i) maximizing
the number of customer requests that can be accepted, and
(ii) minimizing the number of customer requests that can
be rejected, both using relevant resources. By considering
these two objectives, we expect to eliminate scenarios in which
a large number of customer requests are purposely declined
to achieve 

 . We can also encourage the acceptance of

as high a number of customer requests as possible.
In order to pursue the first objective, we define the poten-

tial maximum number of customers (PMNC) using  
⋯ for service  requested at time  as the maximum
number of acceptable customer requests using relevant re-
sources rather than accepting service , which can be for-
mulated by the following linear programming.

   
≠

 (7)

 s.t. 
≠



 ≤     ⋯  (8)

  ≥     ⋯  (9)

An Efficient Two-Phase Heuristic Policy for Acceptance Control in IaaS Cloud Service 95

As in the case of , it is clear that we can reject
service  if   . However, that we will have 
customer requests in the future is not guaranteed. This means
that a decision must be made to accept service  if the difference
  is not greater than a threshold value  , where
 represents the error tolerance of the service provider decision
regarding customer satisfaction. This criterion can be interpre-
ted as allowing the service provider to produce a possible
error of ×(%) with respect to one unit of service 
by accepting service  for a case in which  ≤  .
The value of  can be any non-negative value depending
on the inherent tendencies of the service provider. For example,
if the service provider has a conservative tendency, then
≤   . Otherwise, ≥ .

Based on this result, we establish the second decision-
making criterion for potential customer satisfaction regarding
the number of accepted customers as follows.

D ecision rule 2 : Service  requested at time  is accepted
only if it satisfies  ≤  , where ≥  is the er-
ror tolerance of the service provider’s decision regarding the
customer’s satisfaction.

However, for the second objective we must also consider
that too many customer requests may be rejected based on
Decision Rules 1 and 2. Specifically, if the requested service
 consists of many resources, then we can honor more than
one customer request, and Decision Rule 2  ≤ 
will be easily violated when using reasonable values of  ,
thus resulting in the rejection of service . This result might
lead us to a local feasible solution whereby we accept only
those services that use few resources. Therefore, we need
a method to prevent the second rule from using this localization
as a solution, which can be performed by allowing the decision
rules to diversify in the early stage of the sales period.

We design this method by having the service provider ac-
cept the rejected service  requested at time  with probability
, even if it has been rejected by either Decision Rule
1 or 2. By then generating a random number  between 0
and 1, the method accepts the service only if   .
This acceptance probability is a decreasing function of t ,
meaning that the service provider expresses more confidence
in the results of decision rules as time passes. Based on this
method, we establish the last rule for minimizing the number
of customer requests that have been rejected based on cus-
tomer satisfaction.

Decision rule 3 : Although service  requested at time  will
be rejected by either Decision Rule 1 or 2, it is finally ac-
cepted if it satisfies     , where 
is a randomly generated number between 0 and 1.

Consequently, when the service provider decides to accept
service  requested at time , it can determine both the serv-
ice provider profit and customer satisfaction by applying
these three decision rules sequentially.

3.2 Design of Two-Phase ATCP

Based on the decision rules previously described, we de-
sign an efficient two-phase ATCP. <Figure 2> shows a flow
chart of this policy, and the algorithm operates as follows.

Whenever an IaaS cloud service receives a new request
for service , the ATCP computes  and , then
compares them with the relevant values during the following
two steps. In Phase 1, the ATCP tests Decision Rule 1. If
the rule is violated, then the ATCP generates a random num-
ber  and applies Decision Rule 3 for the purpose of explo-
ration. Otherwise, the ATCP progresses to Phase 2, in which
it tests Decision Rule 2 and follows the same procedure as
in Phase 1. If Decision Rule 3 is not satisfied during Phase
2, then the requested service  is rejected.

Using a given set of parameter values  and  , this proce-
dure can be repeatedly applied to a series of service requests.
We continue to compute  and , and determine
whether each service request is to be accepted or rejected.
The procedure ends when at least one resource is consumed,
and it is not possible to provide any additional service. This
is the overall procedure of the two-phase ATCP for the
two-objective resource provisions that we suggest.

The performance of the policy depends on the values of
 and  , which can be chosen by the service provider to
control the precision of the policy. This can be done by per-
forming numerical experiments with different values. Speci-
fically, for different pairs of  and  , we can generate a
series of service requests and then apply the two-phase
ATCP. When the algorithm stops, we can compute two per-
formance metrics (the service provider profit and the number
of rejected customer requests) and identify appropriate values
of  and  . However, the values to be set depend on the
problem setting, such as the number of service types for IaaS,
the capacities of resources, and the resource usage for each
service.

Moon Kyung Kim․Jin Young Choi96

<Figure 2> Flow Chart of the Proposed Two-Phase ATCP

4. Numerical Experiment

4.1 Design of the Experiment

In order to evaluate the proposed two-phase ATCP, we
conducted a numerical experiment. First, we considered three
virtual machine services currently provided in an actual cloud
environment as follows.

- IBM SmartCloud Enterprise service [4]
- Amazon EC2 instance service [3]
- Gogrid Cloud Server service [16]

<Tables 2>~<Table 4> list the specifications of these three
cloud IaaS services. The categories in the tables are the same
as those in <Table 1>. However, each of these cloud services
provides services with different names. For example, IBM’s
SmartCloud Enterprise provides levels of service that it
groups into copper, bronze, silver, gold, and platinum, which
are based on the quantity of consumed resources. These re-
sources include the CPU, memory, and storage. Without loss

of generality, each resource is assumed to have a limited
capacity.

<Table 2> Specification of IBM SmartCloud Service

Service
Resource

Copper Bronze Silver Gold Platinum
Capacity
(Units)

CPU 2 2 4 8 16 20,000

Memory 4 4 8 16 16 40,000

Storage 60 850 1,024 1,024 2,048 3,000,000

Price($) 0.115 0.160 0.200 0.320 0.630

<Table 3> Specification of Amazon EC2 Service

Service
Resource

Small Medium Large
Extra
Large

Capacity
(units)

CPU 1 2 4 8 30,000

Memory 1.7 3.75 7.5 15 60,000

Storage 160 410 850 1,690 6,000,000

Price($) 0.115 0.230 0.460 0.920

<Table 4> Specification of Gogrid Cloud Service

Service
Resource

S1 S2 S3 S4
Capacity
(units)

CPU 1 2 4 8 30,000

Memory 1 2 4 8 30,000

Storage 50 100 200 400 1,500,000

Price($) 0.12 0.24 0.36 0.48

We assumed that these services are offered in the same
environment as given in <Figure 1>, and that service pro-
viders want to maximize profit and ensure customer satis-
faction. Each time a customer then requests a service, the
service provider may offer various services that share com-
mon resources by using the two-phase ATCP. To represent
different behavior of service requests, we considered two
types of models for the inter-arrival time of service requests
as follows.
(i) Constant inter-arrival time model : Customer service re-

quests occurr in a constant time interval    , with the
occurrence probability of each service distributed either
uniformly or inversely proportional to the service price.

(ii) Exponential inter-arrival time model : Customer requests
for each service occurr according to an exponential dis-
tribution, with the rate distributed either uniformly or in-
versely proportional to the service price.

An Efficient Two-Phase Heuristic Policy for Acceptance Control in IaaS Cloud Service 97

<Table 5>~<Table 7> show the occurrence probability (or
rate) of service requests for the three IaaS services consi-
dered in our experiment. Regarding the constant inter-arrival
time model, each value listed represents the probability that
a service request at each time belongs to a certain type of
service. However, in the case of the exponential inter-arrival
time model, the numbers indicate the arrival rates of different
services, meaning the number of requests for the correspond-
ing service per unit time. Moreover, the values in the second
row in each table correspond to a uniform case meaning
equal probabilities or equal arrival rates. The third row shows
the non-uniform values of probabilities, or arrival rates that
are inversely proportional to the service price. This can be
computed as follows. First, we calculate the inversed values
of price for each service. We then normalize them by making
their sum equal to 1, representing probabilities or arrival
rates.

<Table 5> Occurrence Probability(rate) for IBM SmartCloud

Service

Service
Type

Copper Bronze Silver Gold Platinum

Uniform 0.2 0.2 0.2 0.2 0.2

Non-uniform 0.35 0.25 0.2 0.13 0.07

<Table 6> Occurrence Probability(rate) for Amazon EC2

Service

Service
Type

Small Medium Large
Extra
Large

Uniform 0.25 0.25 0.25 0.25

Non- uniform 0.53 0.27 0.13 0.07

<Table 7> Occurrence Probability(rate) for Gogrid Cloud

Service

Service
Type

S1 S2 S3 S4

Uniform 0.25 0.25 0.25 0.25

Non-constant 0.48 0.24 0.16 0.12

<Table 8> Acceptance Tolerance of Services Considered

 

IBM’sSmartCloud Enterprise service 0.7 0.2

Amazon’s E2C instance service 0.2 0.2

Gogrid’s Cloud Servers service 0.4 0.2

We implemented the proposed algorithm by using Visual
Studio 2008 C++. Through experiments, the total cloud serv-
ice sales period  was determined to be   for
IBM’s service and   for Amazon’s and Gogrid’s
services. The proper values of  and  for the two-phase
ATCP algorithm were determined through repeated experi-
ments, as presented in <Table 8>.

The performance of the proposed algorithm was evaluated
based on the service provider profit and the customer’s
satisfaction. We evaluated customer satisfaction by comput-
ing the customer rejection ratio. Thus, the two performance
measures (PMs) were defined as follows :

- PM1-Service provider profit : the total profits of the ser-
vices accepted during the service sales period  .

- PM2-Customer rejection ratio : the ratio of the number
of service requests rejected during the service sales period
(i.e., the number of service requests rejected/The total
number of service requests).

Moreover, we compared the performance of the proposed
algorithm with existing two heuristics : (i) the first-come-first-
serve (FCFS), which is the most representative dispatching
rule currently known, and (ii) the customized bid price policy
(CBPP), which was proposed to maximize service provider
profit [12]. To the best of our knowledge, CBPP is the most
recently developed heuristic revealing the best performance
at maximizing service provider profit. When a new service
request is received, CBPP uses data acquired from the history
of service sales to calculate the bid price. The bid price repre-
sents the potential value of the service to the service provider.
This number changes depending on the amount of remaining
resources. Thus, it accepts the service request only when the
service price is less than or equal to the bid price.

4.2 Analysis of Experimental Results

We performed a numerical experiment by running the two-
phase ATCP 30 times with each of the three types of IaaS
services listed in <Table 2>~<Table 4>. <Table 9>~<Table
11> show the results of the experiment for PM1 and PM2.
Cases 1 and 2 in the tables indicate the probability or arrival
rate that is distributed uniformly and that is inversely propor-
tional to the service price, respectively.

Regarding PM2, FCFS accepts service requests according
to the order of their receipt. Therefore, no services are re-

Moon Kyung Kim․Jin Young Choi98

<Table 9> Experimental Results of IBM SmartCloud Service

Constant inter-arrival time model Exponential inter-arrival time model

PM1($) PM2(%) PM1($) PM2(%)

ATCP FCFS CBPP ATCP FCFS CBPP ATCP FCFS CBPP ATCP FCFS CBPP

Case 1 3449.41 3328.63 3266.37 74.96 0 90.99 3449.36 3229.82 3266.35 74.54 0 90.21
Case 2 3449.82 3440 3258.33 47.01 0 92.22 3449.82 3440 3257.94 47.48 0 93.90

 <Table 10> Experimental Results of Amazon EC2 Service

Constant inter-arrival time model Exponential inter-arrival time model

PM1($) PM2(%) PM1($) PM2(%)

ATCP FCFS CBPP ATCP FCFS CBPP ATCP FCFS CBPP ATCP FCFS CBPP

Case 1 1286.67 850.71 787.93 71.26 0 87.73 1286.65 854.3 787.91 70.59 0 88.65
Case 2 1286.67 864.23 817.01 49.61 0 76.60 1286.67 862.81 819.98 48.48 0 74.52

<Table 11> Experimental Results of Gogrid Cloud Service

Constant inter-arrival time model Exponential inter-arrival time model

PM1($) PM2(%) PM1($) PM2(%)

ATCP FCFS CBPP ATCP FCFS CBPP ATCP FCFS CBPP ATCP FCFS CBPP

Case1 3599.37 2401.48 1832.54 74.99 0 82.83 3599.37 2408.68 1798.33 74.47 0 84.41
Case2 3599.76 2702.89 2167.39 47.13 0 83.71 3599.63 2688.29 2167.85 47.46 0 84.42

jected and the value of PM2 becomes 0 in all cases. The
values for PM1 and PM2 in the tables are based on the aver-
age yielded from 30 runtimes. Detailed experimental results
for each model of inter-arrival times can be summarized as
follows.

A : Case of the constant inter-arrival time model
- The values of the PM1 were higher when using the

two-phase ATCP than when using either FCFS or CBPP
for all three services. In the case of IBM and Gogrid
services, the profits generated by the two-phase ATCP
were higher than those generated by CBPP by approx-
imately 40% for all cases of probability distributions.
However, no considerable difference between FCFS and
CBPP was apparent, with FCFS having a slightly higher
PM1 value than did CBPP.

- Concerning the type of probability distribution (uniform
or not), all heuristics had similar PM1 values for the
uniform and non-uniform cases, thus indicating that the
PM1 value does not depend on the type of probability
distribution. Based on this observation, we can assume
that the PM1 value converges to a specific value, partic-
ularly when the two-phase ATCP is used with constant
inter-arrival time service requests.

- For PM2, FCFS yielded no rejection. However, the two-

phase ATCP had approximately 7~45% lower PM2 val-
ues than did CBPP for all three services. This means
that CBPP rejects more service requests than does the
two-phase ATCP. Specifically, in Case 2 of Amazon’s
service, CBPP rejected more than 92% of the requested
services. This produced a maximum difference of ap-
proximately 45% compared to results of the two-phase
ATCP.

- CBPP showed no considerable differences in the two
cases of probability distribution (uniform or not). How-
ever, when the two-phase ATCP is used, Case 1 pro-
duced a higher PM2 value by approximately 22~27%
than did Case 2 for all three services. This result shows
that the two-phase ATCP is effective at reducing PM2
in non-uniform probability distribution for service requests.

B : Case of the exponential inter-arrival time model
- The results were very similar to those generated by the

constant inter-arrival time model. Specifically, the
two-phase ATCP produced a higher PM1 than did the
two heuristics (FCFS, CBPP) for all three services. In
the case of PM2, the two-phase ATCP produced lower
values by 10~46% than did CBPP, showing that CBPP
rejected more service requests.

- It seems that the exponential inter-arrival time model

An Efficient Two-Phase Heuristic Policy for Acceptance Control in IaaS Cloud Service 99

changes probabilistically the length of the inter-arrival
times for consecutive service requests and does not af-
fect the performance of the service policies considered
in this study.

- Overall, the type of occurrence probability (or rate) of
the requested service has a greater effect on the perform-
ance level of the resource provisioning policy for IaaS
in cloud computing than does the length of the intervals
between service requests.

- Moreover, for each applied heuristic, PM1 seems to
gravitate to a specific value, and this value may be use-
ful in identifying a boundary value for achieving an opti-
mal PM1 for each service structure.

5. Conclusion

In this study, we proposed an efficient two-phase ATCP
for IaaS cloud service with limited cloud resources. The poli-
cy determines the acceptance of service requests by consider-
ing both (i) the service provider profit and (ii) customer
satisfaction. Specifically, we proposed two decision rules that
evaluate the value of resources required for a requested serv-
ice by computing the potential profit of the service provider
and the potential satisfaction of the customer. Furthermore,
we improved the performance of the suggested policy by
removing from the effect of localization on the search pro-
cedure. By using the acceptance tolerance  and  , the algo-
rithm reflects the error possibility of the acceptance decision,
while compensating for both future fluctuations in customer
demand and the error possibilities generated from past deci-
sions.

The performance of the two-phase ATCP was tested by
a numerical experiment using actual IaaS cloud service
specifications. We considered two types of service requests
with constant and exponential distribution. By defining two
PMs (PM1 and PM2), the results showed that the two-phase
ATCP performs extremely well compared to similar and rep-
resentative heuristics. Furthermore, we observed that the type
of occurrence probability of the requested service, rather than
the length of the intervals between service requests, has a
greater effect on the performance of the resource provision-
ing policy for an IaaS cloud service. We expect that these
results may be used as the baseline for developing an effi-
cient service operation or resource utilization policy, which
can be extended to other cloud services such as PaaS and

SaaS. This is one direction for future studies.

Acknowledgement

This work was supported by Defense Acquisition Program
Administration and Agency for Defense Development under
the contract UD140022PD, Korea.

References

 [1] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., and
Brandic, I., Cloud computing and emerging IT plat-
forms : Vision, hype, and reality for delivering comput-
ing as the 5th utility. Future Generation Computer Sys-
tems, 2009, Vol. 25, No. 6, pp. 599-616.

 [2] Rodero-Merino, L., Vaquero, L.M., Galan, V.G.F., Fontan,
J., Montero, R.S., and Llorente, I.M., From infrastruc-
ture delivery to service management in Clouds. Future
Generation Computer Systems, 2010, Vol. 26, No. 8,
pp. 1226-1240.

 [3] Huckman, R.S., Pisano, G.P., and Kind, L., Amazon
web service. Harvard Business School Case (609-048),
2008.

 [4] IBMSmartCloud, Accessed March 2014 http://www-935.
ibm.com/services/us/en/cloud-enterprise/index.html.

 [5] WindowsAzure, Accessed March 2014, http://www.win-
dowsazure.com/en-us.

 [6] Voorsluys, W., Broberg, J., and Buyya, R. Introduction
to Cloud Computing, John Wiley and Sons, Inc, 2011.

 [7] mozy, Accessed March 2014, http://mozy.com/.
 [8] Yoon, C.H., Technical trends in managing cloud compu-

ting resources, Grid Middleware Research Center KAIST,
2011, pp. 9-11.

 [9] Wu, L., Gang, S.K., and Buyya, R., SLA-based admi-
ssion control for a Software-as-a-Service provider in
Cloud computing environments. Journal of Computer and
System Sciences, 2012, Vol. 78, No. 5, pp. 1280-1299.

[10] Um, T.W., Lee, H., Woo, R., and Choi, J.K., Dynamic
resource allocation and scheduling for cloud-based vir-
tual content delivery networks. ETRI Journal, April
2014, Vol. 36, No. 2, pp. 197-205.

[11] Jula, A., Sundararajan, E., and Othman, Z., Cloud com-
puting service composition : A systematic literature
review. Expert Systems with Applications, 2014, Vol.
41, pp. 3809-3824.

[12] Anandasivam, A., Consumer Preferences and Bid-Price

Moon Kyung Kim․Jin Young Choi100

Control for Cloud Services, doctoral dissertation, Insti-
tute for Information Systems and Management, Univer-
sity of Karlsruhe, 2010, pp. 96-100.

[13] Puschel, T., Lang, F., Bodenstein, C., and Neumann,
D., A Service Request Acceptance Model for Revenue
Optimization-Evaluating Policies Using a Web Based
Resource Management Game. 43rd Hawaii International
Conference on System Science, 2010.

[14] Moakar, L.A., Chrysanthis, P.K., Chung, C., Guirguis,
S., Labrinidis, A., Neophyton, P., and Pruhs, K., Admi-
ssion Control Mechanisms for Continuous Queries in
the Cloud. 26th IEEE International Conference on Data
Engineering, 2010.

[15] Toosi, A.N., Calheiros, R.N., Thulasiram, R.K., and
Buyya, R., Resource Provisioining Policies to Increase
IaaS Provider’s Profit in a Federated Cloud Environ-
ment. IEEE International Conference on High Perfor-
mance Computing and Communications, 2011.

[16] Gogrid, Accessed March 2014, http://www.gogrid.com/.
[17] Anandasivam, A., Buschek, S., and Buyya, R., A Heuri-

stic Approach for Capacity Control in Clouds. IEEE Con-
ference on Commerce and Enterprise Computing, 2009.

ORCID
Moon Kyung Kim | http://orcid.org/0000-0002-3834-6280
Jin Young Choi | http://orcid.org/0000-0001-6397-3107

