• Title/Summary/Keyword: cloud computing systems

Search Result 602, Processing Time 0.028 seconds

Enhancement of Semantic Interoper ability in Healthcare Systems Using IFCIoT Architecture

  • Sony P;Siva Shanmugam G;Sureshkumar Nagarajan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.881-902
    • /
    • 2024
  • Fast decision support systems and accurate diagnosis have become significant in the rapidly growing healthcare sector. As the number of disparate medical IoT devices connected to the human body rises, fast and interrelated healthcare data retrieval gets harder and harder. One of the most important requirements for the Healthcare Internet of Things (HIoT) is semantic interoperability. The state-of-the-art HIoT systems have problems with bandwidth and latency. An extension of cloud computing called fog computing not only solves the latency problem but also provides other benefits including resource mobility and on-demand scalability. The recommended approach helps to lower latency and network bandwidth consumption in a system that provides semantic interoperability in healthcare organizations. To evaluate the system's language processing performance, we simulated it in three different contexts. 1. Polysemy resolution system 2. System for hyponymy-hypernymy resolution with polysemy 3. System for resolving polysemy, hypernymy, hyponymy, meronymy, and holonymy. In comparison to the other two systems, the third system has lower latency and network usage. The proposed framework can reduce the computation overhead of heterogeneous healthcare data. The simulation results show that fog computing can reduce delay, network usage, and energy consumption.

Tracking Data through Tracking Data Server in Edge Computing (엣지 컴퓨팅 환경에서 추적 데이터 서버를 통한 데이터 추적)

  • Lim, Han-wool;Byoun, Won-jun;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.443-452
    • /
    • 2021
  • One of the key technologies in edge computing is that it always provides services close to the user by moving data between edge servers according to the user's movements. As such, the movement of data between edge servers is frequent. As IoT technology advances and usage areas expand, the data generated also increases, requiring technology to accurately track and process each data to properly manage the data present in the edge computing environment. Currently, cloud systems do not have data disposal technology based on tracking technology for data movement and distribution in their environment, so users cannot see where it is now, whether it is properly removed or not left in the cloud system if users request it to be deleted. In this paper, we propose a tracking data server to create and manage the movement and distribution of data for each edge server and data stored in the central cloud in an edge computing environment.

A Study on the Importance Analysis of Reliability, Security, Economic Efficiency Factors that Companies Should Determine When Adopting Cloud Computing Services (클라우드 컴퓨팅 서비스 채택 시 기업이 판단해야 하는 신뢰성, 보안성, 경제성 요인의 중요도 분석)

  • Kang, Da-Yeon
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.75-81
    • /
    • 2021
  • The purpose of this research is to derive and evaluate priorities for critical factors that must be determined before an enterprise adopts a cloud computing service. AHP analysis techniques were used to reflect decisions made by experts as research methods. AHP is a decision-making technique that expresses complex decision-making problems hierarchically and derives the best alternatives through pairwise comparison between the items of the hierarchy. Compared to the existing statistical decision making techniques, the decision making process is systematic and simple, making it easy to understand. In addition, the procedure is also reasonable by providing an indicator to determine the consistency of the decision maker in the analysis process. The analysis results of this research showed that security was the first priority, reliability was the second priority, and economic efficiency was the third priority. Among the factors in the first-priority security items, the access control rights and the safety factors of external threats are the most important factors. Research results can be used as a guideline in future practice, and it is necessary to evaluate, compare and analyze the satisfaction of companies that have adopted cloud computing services in the future.

Analysis of Technology of Green IT fields using patent information (특허정보를 이용한 그린 IT 분야 기술 분석)

  • Koo, Young-Deok;Jeong, Dae-Hyun;Kwon, Young-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.2
    • /
    • pp.249-253
    • /
    • 2013
  • This study analyzed that technological competition, variety and simility of Green IT fields using patents data. To achieve this, we limited range of Green IT that reduction of energy, eco-friendly technology. Therefore we conducted analysis of patents that power saving systems, light control system, smart system, cloud computing and green house/eco systems. As the result of that, power saving field was the most developed. The simililarty of power saving and cloud computing systems are very high and similiarities of light control system, green house/eco systems and smart system were very high.

The study of a full cycle semi-automated business process re-engineering: A comprehensive framework

  • Lee, Sanghwa;Sutrisnowati, Riska A.;Won, Seokrae;Woo, Jong Seong;Bae, Hyerim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.103-109
    • /
    • 2018
  • This paper presents an idea and framework to automate a full cycle business process management and re-engineering by integrating traditional business process management systems, process mining, data mining, machine learning, and simulation. We build our framework on the cloud-based platform such that various data sources can be incorporated. We design our systems to be extensible so that not only beneficial for practitioners of BPM, but also for researchers. Our framework can be used as a test bed for researchers without the complication of system integration. The automation of redesigning phase and selecting a baseline process model for deployment are the two main contributions of this study. In the redesigning phase, we deal with both the analysis of the existing process model and what-if analysis on how to improve the process at the same time, Additionally, improving a business process can be applied in a case by case basis that needs a lot of trial and error and huge data. In selecting the baseline process model, we need to compare many probable routes of business execution and calculate the most efficient one in respect to production cost and execution time. We also discuss the challenges and limitation of the framework, including the systems adoptability, technical difficulties and human factors.

A Study on the Latency Analysis of Bus Information System Based on Edge Cloud System (엣지 클라우드 시스템 기반 버스 정보 시스템의 지연시간 분석연구)

  • SEO Seungho;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.3-11
    • /
    • 2023
  • Real-time control systems are growing rapidly as infrastructure technologies such as IoT and mobile communication develop and services that value real-time such as factory management and vehicle operation checks increase. Various solutions have been proposed to increase the time sensitivity of this system, but most real-time control systems are currently composed of local servers and multiple clients located in control stations, which are transmitted to local servers where control systems are located. In this paper, we proposed an edge computing-based real-time control model that can reduce the time it takes for the bus information system, one of the real-time control systems, to provide the information to the user at the time it collects the information. Simulating the existing model and the edge computing model, the edge computing model confirmed that the cost for users to receive data is reduced from at least 10% to up to 80% compared to the existing model.

  • PDF

Study of Data Placement Schemes for SNS Services in Cloud Environment

  • Chen, Yen-Wen;Lin, Meng-Hsien;Wu, Min-Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3203-3215
    • /
    • 2015
  • Due to the high growth of SNS population, service scalability is one of the critical issues to be addressed. The cloud environment provides the flexible computing and storage resources for services deployment, which fits the characteristics of scalable SNS deployment. However, if the SNS related information is not properly placed, it will cause unbalance load and heavy transmission cost on the storage virtual machine (VM) and cloud data center (CDC) network. In this paper, we characterize the SNS into a graph model based on the users' associations and interest correlations. The node weight represents the degree of associations, which can be indexed by the number of friends or data sources, and the link weight denotes the correlation between users/data sources. Then, based on the SNS graph, the two-step algorithm is proposed in this paper to determine the placement of SNS related data among VMs. Two k-means based clustering schemes are proposed to allocate social data in proper VM and physical servers for pre-configured VM and dynamic VM environment, respectively. The experimental example was conducted and to illustrate and compare the performance of the proposed schemes.

Fuzzy Keyword Search Method over Ciphertexts supporting Access Control

  • Mei, Zhuolin;Wu, Bin;Tian, Shengli;Ruan, Yonghui;Cui, Zongmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5671-5693
    • /
    • 2017
  • With the rapid development of cloud computing, more and more data owners are motivated to outsource their data to cloud for various benefits. Due to serious privacy concerns, sensitive data should be encrypted before being outsourced to the cloud. However, this results that effective data utilization becomes a very challenging task, such as keyword search over ciphertexts. Although many searchable encryption methods have been proposed, they only support exact keyword search. Thus, misspelled keywords in the query will result in wrong or no matching. Very recently, a few methods extends the search capability to fuzzy keyword search. Some of them may result in inaccurate search results. The other methods need very large indexes which inevitably lead to low search efficiency. Additionally, the above fuzzy keyword search methods do not support access control. In our paper, we propose a searchable encryption method which achieves fuzzy search and access control through algorithm design and Ciphertext-Policy Attribute-based Encryption (CP-ABE). In our method, the index is small and the search results are accurate. We present word pattern which can be used to balance the search efficiency and privacy. Finally, we conduct extensive experiments and analyze the security of the proposed method.

A Load-Balancing Approach Using an Improved Simulated Annealing Algorithm

  • Hanine, Mohamed;Benlahmar, El-Habib
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.132-144
    • /
    • 2020
  • Cloud computing is an emerging technology based on the concept of enabling data access from anywhere, at any time, from any platform. The exponential growth of cloud users has resulted in the emergence of multiple issues, such as the workload imbalance between the virtual machines (VMs) of data centers in a cloud environment greatly impacting its overall performance. Our axis of research is the load balancing of a data center's VMs. It aims at reducing the degree of a load's imbalance between those VMs so that a better resource utilization will be provided, thus ensuring a greater quality of service. Our article focuses on two phases to balance the workload between the VMs. The first step will be the determination of the threshold of each VM before it can be considered overloaded. The second step will be a task allocation to the VMs by relying on an improved and faster version of the meta-heuristic "simulated annealing (SA)". We mainly focused on the acceptance probability of the SA, as, by modifying the content of the acceptance probability, we could ensure that the SA was able to offer a smart task distribution between the VMs in fewer loops than a classical usage of the SA.

Implementation of AIoT Edge Cluster System via Distributed Deep Learning Pipeline

  • Jeon, Sung-Ho;Lee, Cheol-Gyu;Lee, Jae-Deok;Kim, Bo-Seok;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.278-288
    • /
    • 2021
  • Recently, IoT systems are cloud-based, so that continuous and large amounts of data collected from sensor nodes are processed in the data server through the cloud. However, in the centralized configuration of large-scale cloud computing, computational processing must be performed at a physical location where data collection and processing take place, and the need for edge computers to reduce the network load of the cloud system is gradually expanding. In this paper, a cluster system consisting of 6 inexpensive Raspberry Pi boards was constructed to perform fast data processing. And we propose "Kubernetes cluster system(KCS)" for processing large data collection and analysis by model distribution and data pipeline method. To compare the performance of this study, an ensemble model of deep learning was built, and the accuracy, processing performance, and processing time through the proposed KCS system and model distribution were compared and analyzed. As a result, the ensemble model was excellent in accuracy, but the KCS implemented as a data pipeline proved to be superior in processing speed..